Mapinfo MapBasic
v. 8.0

User Guide

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its representatives. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, without the written permission of MapInfo Corporation,
One Global View, Troy, New York 12180-8399.

© 2005 Maplnfo Corporation. All rights reserved. Maplnfo, MapInfo Professional, MapBasic, StreetPro and the MapInfo logo are trademarks of MapInfo Corporation and/or
its affiliates.

Maplnfo Corporate Headquarters:

Voice: (518) 285-6000

Fax: (518) 285-6060

Sales Info Hotline: (800) 327-8627

Government Sales Hotline: (800) 619-2333

Technical Support Hotline: (518) 285-7283

Technical Support Fax: (518) 285-6080

Contact information for North American offices is located at: http://www.mapinfo.com/company/company_profile/index.cfm.
Contact information for worldwide offices is located at: http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm.
Contact information for European and Middle East offices is located at: http://www.mapinfo.co.uk.

Contact information for Asia Pacific offices is located at: http://www.mapinfo.com.au.

Adobe Acrobat® is a registered trademark of Adobe Systems Incorporated in the United States.

Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.

libtiff © 1988-1995 Sam Leffler, copyright © Silicon Graphics, Inc.

libgeotiff © 1995 Niles D. Ritter.

Portions © 1999 3D Graphics, Inc. All Rights Reserved.

HIL - Halo Image Library™ © 1993, Media Cybernetics Inc. Halo Imaging Library is a trademark of Media Cybernetics, Inc.
Portions thereof LEAD Technologies, Inc. © 1991-2005. All Rights Reserved.

Portions © 1993-2005 Ken Martin, Will Schroeder, Bill Lorensen. All Rights Reserved.

Blue Marble © 1993-2005

ECW by ER Mapper © 1993-2005

VM Grid by Northwood Technologies, Inc., a Marconi Company © 1995-2004™.

Portions © 2005 Earth Resource Mapping, Ltd. All Rights Reserved.

MrSID, MrSID Decompressor and the MrSID logo are trademarks of LizardTech, Inc. used under license. Portions of this computer program are (c¢) 1995-1998 LizardTech
and/or the university of California or are protected by US patent nos. 5,710,835; 5,130,701; or 5,467,110 and are used under license. All rights reserved. MrSID is protected
under US and international patent & copyright treaties and foreign patent applications are pending. Unauthorized use or duplication prohibited.

Universal Translator by Safe Software, Inc. © 2004.
Crystal Reports ® is proprietary trademark of Crystal Decisions. All Rights Reserved.

Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.

May 2005

http://www.mapinfo.com/company/company_profile/index.cfm
http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm

Table of Contents

Chapter 1: Getting Started it e e nns 13
Hardware & Software Requirements. ittt iiiiaee e nnnnns 14
Compatibility with Previous Versions. 14
Installing the MapBasic Development Environment 14
Starting MapBasiC 14
MapBasic File Names and File Typesc..o i e e e neans 15
MapBasic Documentation Set i e 16
MapBasic® Reference. 16
Installing Online Documentation 16
Conventions Used in This Manual. it i ae e 16
T OIS . . oo 16
Typographical ConVentions 17
Register Today! 17
Working with Technical Support e 17
Before You Call 17
The Support Tracking System 18
Expected Response Time 18
Exchanging Information 18
Software Defects 18
Other RESOUICESt e e e 18
Chapter 2: New and Enhanced MapBasic Statements and Functions.............. 20
Enhanced MapBasic Functions and Statements 37
Enabling Transparent Patterns on Same Layer. 47
Export Windows to Additional Formats 47
Chapter 3: A Quick LookatMapBasicciiiiiiiiiiiininnnnnnnnns 49
Getting Started i i i e 50
How Do | Create and Run a MapBasic Application? 51
What Are the Key Features of MapBasic?ttt iiinnanans 51
MapBasic Lets You Customize MapInfo 51
MapBasic Lets You Automate MapInfo 51
MapBasic Provides Powerful Database-Access Tools 52
MapBasic Lets You Connect Mapinfo To Other Applications 52
How Do lLearn MapBasiC?o ittt aaae e e 52
The MapBasic Window in MapInfo it e e 54

Training and On-Site Consulting 54

User Guide Table of Contents

Chapter 4: Using the Development Environment 56
Introduction to MapBasic Development Environment. 57
Editing Your Program i i i e e 57

Keyboard ShortCuts e 57
Limitations of the MapBasic Text Editor 59
Compiling YOUr Programttt iia i ia st e e nnnennnesnn 60
A Note on Compilation Errors. 61
Running a Compiled Application e 61
Using Another Editor to Write MapBasic Programs i 61
Linking Multiple Modules Into a Single Project ...t nnnnn. 62
What is a MapBasic Project File? 62
Creatinga Project File 64
Compiling and Linking a Project e 64
Calling Functions or Procedures From Other Modules 65
Menu Summary in MapBasic Development Environment............................. 66
The Edit MenU 67
The Search Menu 68
The Project Menu 69
The WIndow Menu 70
The Help Menu 70

Chapter 5: MapBasic Fundamentals............... i ittt 71

General Notes on MapBasic Syntaxc.cciiiiiiiiiiinii it nnneens 72
COMMENTS . ..o 72
Case-SensitiVity 72
Continuing a Statement Across Multiple Lines. 72
Codes Defined In mapbasic.def. 72
Typing Statements Into the MapBasic Window 73
Variables. . .. 73
Fixed-length and variable-length String variables 75
Array Variables 75
Custom Data Types (Data Structures) e 76
Global Variables 77
Scope of Variables 78

] (=== Lo 4 - 78
Whatis @ Constant? 78
Whatis an Operator? 79
Whatis a Function Call?. 79
A Closer Look At Constantso 80
Variable Type CONVErsioN 83
A Closer Look At Operators 83
MapBasic Operator PreCedencet e 86

Looping, Branching, and Other Flow-Control. 87
If.. Then Statement. 87
Do Case Statement 88
GoTo Statement 89

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 4 MB_UG.pdf

User Guide Table of Contents

For...Next Statement e 90
DO, 00D . 90
While...Wend Loop 91
Ending Your Program. e 91
Ending Your Program and Maplnfo Professional 91
ProceduUres. . ..o e 92
Main Procedure e 92
Calling a Procedure 92
Calling a Procedure That Has Parameters. 93
Passing Parameters By Reference 93
Passing Parameters By Value 93
Calling Procedures Recursively e e 94
Procedures That Act As System EventHandlers ciiiiiiin.. 95
What Is a System Event? 95
What Is an Event Handler?. 95
When Is a System Event Handler Called? 97
Tips for Handler Procedures i et e et 98
Keep Handler Procedures Short. e 98
Selecting Without Calling SelChangedHandler, 98
Preventing Infinite LOOPS 98
Custom FUNCiONS 99
Scope of FUNCHIONS. 99
CompilerInstructions i e 100
The Define Statement 100
The Include Statement 100
Program Organization.o.t ittt ittt it et e e aanenns 102
Chapter 6: Debugging and Trapping Runtime Errors 103
Runtime Error Behavior et e e 104
Debugging a MapBasic Program ittt iinniinnnnnnrrrrannnnnns 104
Summary of the Debugging Process 105
Limitations of the Stop Statement. 105
Other Debugging ToOIS i 106
Error TrappPing . ..ot e 106
Example of Error Trapping oot 107
Chapter 7: Creating the UserInterface i, 108
Introduction to MapBasic User Interface Principles, 109
Event-Driven Programmingttt iiaie et 109
What Is an EVent? 109
What Happens When The User Generates AMenuEvent? 109
How Does a Program Handle ButtonPad Events?. 110
How Does a Program Handle Dialog Events? 111
=Y 3 111
Menu Fundamentals. e 111
Adding New Items TO AMENU e 112
Removing Items From AMenu 112

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 5 MB_UG.pdf

User Guide Table of Contents

Creating ANew Menu 113
Altering A Menu [tem 114
Re-Defining The Menu Bar e e 116
Specifying Language-Independent Menu References 116
Customizing Maplinfo Professional’s Shortcut Menus 117
Assigning One Handler Procedure To Multiple Menu ltems. 117
Simulating Menu Selections 118
Defining Shortcut Keys And Hot Keys e 118
Controlling Menus Through the Maplnfo Professional Menus File 119
Standard Dialog BoXesSottt e e 121
Displaying @a Messaget 121
Asking a Yes-or-No QUestion. 121
Selecting a File. 122
Indicating the Percent Complete 122
Displaying One Row Froma Table. e 122
Custom Dialog BOXeSottt i i e 123
Sizes and Positions of Controls 124
CoNtrol TYPES . o 125
Specifying a Control's Initial Value 127
Reading a Control's Final Value e 127
Responding to User Actions by Calling a Handler Procedure 128
Enabled / Disabled Controls. e 128
Letting the User Choose Froma List 129
Managing MultiListBox CoNntrols e 129
Specifying Shortcut Keys for Controls 130
Terminating a Dialog BoXo 130
WiNAOWSt i i 131
Specifying a Window’s Size and Position. 132
Map WINdoWS 132
Using Animation Layers to Speed Up Map Redraws 133
Sample Program. 133
Performance Tips for Animation Layers. 133
Browser Windows. 134
Graph WINdoOWS 135
Layout WINdOWSo 135
Redistrict WIindoWs 136
Message WinNAOW 136
ButtonPads (Toolbars)t i it et it s e i nas 138
What Happens When The User Chooses AButton? 138
MapBasic Statements Related ToButtonPads 138
Create ButtonPad. 139
Alter ButtonPad 139
Alter BUttOn . .. 139
CommandInfo()ot 139
ToolHaNdIer . ..o 139
Creating A Custom PushBuUtton e 140

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 6 MB_UG.pdf

User Guide Table of Contents

Adding A Button To The Main ButtonPad 140
Creating A Custom ToolButton 141
Choosing Icons for Custom BUttons. 142
Selecting Objects by Clicking With a ToolButton 143
Including Standard Buttons in Custom ButtonPads 143
Assigning Help MessagestoButtons. 144
Docking a ButtonPad to the Topofthe Screen 145
Other Features of ButtonPads 145
Integrating Your Application Into Mapinfo Professional 145
Loading Applications Through the Startup Workspace 146
Manipulating Workspaces through MapBasic 147
Performance Tips forthe Userinterface i iiiiinninennnnn 147
Animation Layers 147
Avoiding Unnecessary Window Redraws. 147
Purging the Message WIindow 148
Chapter 8: Working With Tables e 149
Opening Tables Through MapBasiccciiiiiiiiiii ittt iinnnneeens 150
Determining Table Names at Runtime 150
Opening Two Tables With The Same Name 150
Opening Non-Native Files As Tables i 151
Reading Row-And-Column Values FromaTable.............. ... i, 152
Alias Data Types as Column References. i 153
Yoo = 154
Using the “RowID” Column Name To Refer To Row Numbers 155
Using the “Obj” Column Name To Refer To Graphic Objects 155
Finding Map Addresses InTables 156
GEOCOAING . . v vttt 156
Performing SQL Select Queries 156
Error Checking for Table and Column References. 156
Writing Row-And-Column ValuestoaTable................oiiiiii i, 157
Creating New Tableso et s e e e e e 157
Modifying a Table’s Structure e 157
Creating Indexes and Making Tables Mappable 158
Reading A Table’s Structural Information. 159
Working With The Selection Table i 159
Changing the Selection 160
Updating the Currently-Selected Rows i 161
Using the SelectionforUser Input 161
Accessing the Cosmetic Layer. ittt 162
Accessing Layout Windowsottt i ettt 162
Multi-User Editing ettt 163
The Rules of Multi-User Editingo 163
Preventing Conflicts When Writing SharedData 165
Openinga Table for Writing 166
Filesthat Make UpaTable e e e 166

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 7 MB_UG.pdf

User Guide Table of Contents

Rasterimage Tables i e et aaaee e 167
Working With Metadata. oo e ettt e e nns 169
Whatis Metadata? 169
What Do Metadata Keys Look Like? 169
Examples of Working With Metadata 170
Working With Seamless Tables it i i et e e e e nnnnns 171
Whatis a Seamless Table? 171
How Do Seamless Tables Work?. 172
MapBasic Syntax for Seamless Tables i 172
Limitations of Seamless Tables 173
Accessing DBMS Datattt i i e s 173
How Remote Data Commands Communicate with a Database. 173
Connecting and Disconnecting. e 174
Accessing/Updating Remote Databases with Linked Tables 175
Live Access to Remote Databases. 176
Performance Tips for Table Manipulation i i iiiinnnnn 176
Minimize Transaction-File Processing i 176
Use Indices Where Appropriate 177
Using Sub-Selects 177
Optimized Select Statements 177
Using Update Statements. e 177
Chapter 9: File Input/Output. e e aaanannnnnn 178
Overview of File Input/Output. i ettt et aanneeeens 179
Sequential File /O e 180
Random File /0 182
Binary File /O 182
Platform-Specific & International Character Sets. it 182
File Information Functions e 183
Chapter 10: Graphical Objects. e e e e e eeee et 184
Using Object Variables i i i i et ettt e et aaanneens 185
Using the “Obj” Columnt i et a e a et aaaennnennn 185
Creating an Object Column 186
Limitations of the Object Column e 186
Querying An Object’s Attributescc i i e 187
Object Styles (Pen, Brush, Symbol, Font) 188
Understanding Font Styles e 189
Style Variables 190
Selecting Objects of a Particular Style 191
Creating New Objectsottt i i ittt e i aaae e e e aennns 193
Object-Creation Statements 193
Object-Creation FUNCHiONS 194
Creating Objects With Variable Numbersof Nodes 194
Storing Objects InaTable 195

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 8 MB_UG.pdf

User Guide Table of Contents

Creating Objects Based On Existing Objects 196
Creating a Buffer 196
Using Union, Intersection,and Merge i 196
Creating Offset CopPIeS o oot e 197

Modifying Objects i et it s 197
General Procedure for Modifyingan Object. i 197
Repositioning An Object. e 198
Moving Objects and Object Nodes. e 198
Modifying An Object’s Pen, Brush, Font, or Symbol Style 198
Converting An Object To ARegionor Polyline 198
Erasing Part Of An Object 199
Points Of Intersection 199

Working With Map Labels i e e e e ans 199
Turning Labels On 199
Turning Labels Off 200
Editing Individual Labels. 200
Querying Labels 200
Other Examples of the Set Map Statement 201
Differences Between Labels and Text Objects. 201

Coordinates and Units of Measure e 203
Units of Measure 204

Advanced Geographic QUErIEScciitiiir i iin it a it ianenannnns 205
Using Geographic Comparison Operatorst 205
Querying Objects in Tables 206
Using Geographic SQL Queries With Subselects 207
Using GeographiC JOINSo oo 208
Proportional Data Aggregation 209

Chapter 11: Advanced Features of Microsoft Windows 210

Declaring and Calling Dynamic Link Libraries (DLLS).ccviiiiiiniiennnn.. 211
Specifying the Library 211
Passing Parameters 212
Calling Standard Libraries 212
Callinga DLL Routine by an Alias 212
Array ArgUMENTS. 213
User-Defined Typeso 213
Logical ArgumeNntso 213
Handles 214
Example: Calling a Routine in KERNEL 214
Troubleshooting Tips for DLLSo e 215

Creating Custom Button lcons and Draw CUrsors.oiiiiiinnnnnnnneenns 216
Reusing Standard ICONS e 216
CUSIOM ICONS . . . 217
Custom Draw Cursors for Windows 218

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 9 MB_UG.pdf

User Guide Table of Contents

Inter-Application Communication UsingDDE0 iiiiiiirnnnnenn. 218
Overview of DDE Conversations e 218
How MapBasic Actsas a DDE Client. e 218
How Mapinfo Acts as @ DDE Server e e 220
How Maplinfo Handles DDE Execute Messages, 222
Communicating With Visual Basic Using DDE. 223
Examples of DDE Conversations. e 223
DDE Advise Links.o 223

Incorporating Windows Help Into Your Application. 223

Chapter 12: Integrated Mapping e e e e eeeeeeanannnnn 225

What Does Integrated Mapping Look Like?o iiiiiiieieennnnnns 226

Conceptual Overview of Integrated Mappingt e et 227

Technical Overview of Integrated Mapping.t e 228
System RequUIrements 228
Other Technical Notes e 228

A Short Sample Program: “Hello, (Map of) World”, 229

A Closer Look at Integrated Mappingcoi ittt iiiiaeeeeennnnnn 229
Sending Commands to MapInfo. 230
Querying Data from MapInfo 230
Customizing MaplInfo’s Shortcut Menus. 235
Terminating Your Visual Basic Program. 236
A Note About MapBasic Command Strings 236
A Note About Dialog BOXESo 237
A Note About Accelerator Keys 237

Using Callbacks to Retrieve InfofromMapinfo i, 237
Technical Requirements for Callbacks. 238
General Procedure for Using OLE Callbacks. i, 238
Processing the Data Senttoa Callback. 239
C/C++ Syntax for Standard Notification Callbacks. 240

Alternatives to Using OLE Callbacks.t i e naas 241
DDE Callbackso 241
MBX Callbackso 242
Displaying Standard MapInfo Help. 242
Disabling Online Help. 242
Displayinga Custom Help File e 242

Related MapBasic Statements and Functions 243

Mapinfo Command-Line Argumentsttt 253
Getting Started with Integrated Mapping and Visual C++ withMFC 254
Add OLE Automation Client Support 255
Create the Maplinfo Support class, and create an instance ofit. 255
Test yoUr WOIKo 256
Redefine the Shortcut Menus. 256
Reparenting MapInfo’s Dialogs 256
Addinga Map to your View. 257
Adding a Map Menu Command 258

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 10 MB_UG.pdf

User Guide Table of Contents

Adding Toolbar Buttons and Handlers i 258
Using Exception Handling to Catch MapInfoErrors. it 260

Add OLE Automation Server SUPpOrt. 260
Adding the WindowContentsChanged Callback. 261
Learning Moreot i i i e 261
Appendix A: Sample Programsttt s 262
Samples\Delphi Folder i e et e 263
Samples DLLEXAMP Folder.ttt e it ea et e et aaannnneens 263
Samples\MFC Folder. i et e 268
Samples\PwrBIdr Folder. e e 268
Samples\VB4 Folderttt i ettt ettt aa e 268
Samples\VB6 Folder i e 269
Appendix B: Summary of Operators.o ittt iiiiae e 270
Numeric Operators ittt e e et 271
CompParisoN OPeratorSo vttt it i e ittt ettt e e aa et et 272
Logical Operatorsttt a et e e 272
Geographic Operators. i et e 273
Precedence 274
Automatic Type CONVerSiONS.ttt ittt it e e ettt st aanneeeenennnn 275
Appendix C: List of MapBasic Changes by Version 276
Features Introduced or ChangedinMapBasic 7.8............. ... i, 277
Features Introduced in MapBasic 7.5 i i i iiee e e 278
Features Introduced in MapBasic 7.0ttt iinnnnnnnnnnnnnennns 278
Appendix D: Supported ODBC Table Types.ciiiiiiiiiiiiiiiinnnnnn 280
Appendix E: Making a Remote Table Mappable................ 281
Prerequisites for Storing/Retrieving SpatialData 282
CreatingaMapIinfoMap Catalogottt ie e ae s 282
Appendix F: Data Setting and Management. 284
Upgrading Applications from Versions Priorto6.5................. i, 285

A Glossary for Upgrading Applications. 286
Application Data Files and Directories ittt 287
Default Preferences Paths i e e e aaeens 289
Registry Changes it e ettt e aa e aa e nan e nneennn 289
Installer Requirements and Group Policies i, 290
MapBasiC 6.5 290
MapBasiC 7.0 290
Appendix GL: MapBasic Glossaryciiiiiiiininiininnnnnnnnnnns 291
3 ' = 299

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 11 MB_UG.pdf

User Guide Table of Contents

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 12 MB_UG.pdf

Getting Started

Welcome to the MapBasic Development Environment 8.0, the powerful,
yet easy-to-use programming language that lets you customize and
automate Maplnfo Professional.

The following pages tell you what you need to know to install the
MapBasic software. For information on the purpose and capabilities of
MapBasic, see Chapter 3: A Quick Look at MapBasic.

Sections in this Chapter:

¢+ Hardware & Software Requirements. 14
+ Installing the MapBasic Development Environment. 14
¢+ MapBasic File Names and File Types. 15
¢ MapBasic DocumentationSet........................ 16
¢ Conventions Usedin ThisManual 16

£ Maplnfo.

User Guide Chapter 1: Getting Started

Hardware & Software Requirements

Before installing MapBasic for Windows, please make certain that your computer meets the following
minimum requirements:

Requirement Your choices are:
System Software Microsoft Windows XP/2000/98 or Windows NT 4.0/2000
Display Any display adapter supported by Windows
Mouse Any mouse or pointing device supported by Windows
Disk space 10 MB

Compatibility with Previous Versions

Maplnfo Professional can run applications created with current or earlier versions of MapBasic.

See Appendix C: List of MapBasic Changes by Version for more information about backwards
compatibility.

Installing the MapBasic Development Environment

Before You Begin

The MapBasic installation procedure is described below. If you haven’t already done so:

¢ Install Mapinfo Professional before you install MapBasic. Please see the MaplInfo Professional
User Guide for installation instructions.

e Write your MapBasic serial number in an easy-to-remember place, such as the title page of the
manual.

Installation

1. From the MapBasic CD, choose Install MapBasic and follow the on-screen installation.
The default location for MapBasic is a directory inside the Maplnfo directory (for example,
C:\ProgramFiles\MAPINFO\MAPBASIC\MAPBASIC.EXE).

If the CD does not automatically start, from the CD drive, click SETUP.

Starting MapBasic
To start the MapBasic Development Environment,

1. Run the WINDOWS PROGRAM MANAGER.
2. To run MapBasic, choose MAPBASIC from the MaplInfo Program Group.

Note: You can check for product updates to your version anytime by selecting HELP > CHECK FOR
UPDATE.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 14 MB_UG.pdf

User Guide Chapter 1: Getting Started

MapBasic File Names and File Types

The MapBasic installation procedure places these files on your computer:

File Name

Description

errors.doc:

Text file listing MapBasic error codes

mapbasic.exe:

executable file which runs the MapBasic development environment

mapbasic.def:

Include file containing standard define codes

menu.def:

Include file containing menu-related define codes

icons.def:

Include file containing ButtonPad- and cursor-related define codes

mapbasic.hlp:

MapBasic on-line help file

mapbasic.h:

Header file for C/C++ programmers; contents similar to mapbasic.def, but
using C/C++ syntax

mapbasic.bas:

Header file for Visual Basic programmers; contents similar to mapbasic.def,
but using Visual Basic syntax

mapbasic65.isu

Uninstall log file -- needed to properly uninstall MapBasic.

mbres650.dll

Part of the software; contains resources such as strings and dialogs.

milib650.dll

Part of the software; contains XVT executable code

papersize.def

Include file for use by MB application developers; contains defines for use
with printer control MapBasic statements

usrinfmb.log

Contains log of installation process.

samples folder

contains filename.mb, filename.mbp: sample programs;

As you use the MapBasic development environment, you produce files with the following extensions:

File Name Description

filename.mb Program files (source code)

filename.mbx Compiled (executable) files

filename.mbp Project files (which list all modules to include in a project)

filename.mbo Obiject files (files created after compiling modules in a project)

filename.err Error listings, generated if you compile a program that has compilation

errors.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 15 MB_UG.pdf

User Guide Chapter 1: Getting Started

MapBasic Documentation Set

In addition to the User Guide, MapBasic’s documentation set includes an online version of this guide,
online MapBasic Reference, and online Help.

MapBasic® Reference

The MapBasic online Reference is a complete guide to all MapBasic commands. See Using the
MapBasic Window, for a discussion of which MapBasic commands can be used.

Installing Online Documentation

Access the online MapBasic Reference or User Guide directly from the MapBasic CD, or install the
Adobe® Acrobat Reader to access the files locally.

Choose to access either of the online manuals directly from the CD.
To install the documentation locally:

1. Install the Acrobat® Reader.
2. Copy the files from the [CD_ROM]:\PDF_DOCS folder to a local directory.
mb70ug.pdf is this Guide and requires ~8 MB of disk space.

mb_ref.pdf is the MapBasic Reference Guide and requires ~10 MB of disk space.

3. From Windows Explorer, double-click on either file to automatically launch the Acrobat®
Reader and the online books.

Conventions Used in This Manual

This manual uses the following terms and typographical conventions.

Terms

This manual addresses the application developer as you, and refers to the person using an application
as the user. For example:

You can use MapBasic’s Note statement to give the user a message.
The terms program and application are used in the following manner:

A program is a text file typed in by you, the programmer. Typically, MapBasic program files have the
extension .MB.

An application file is a binary file executable by MaplInfo. The application file must be present when the
user runs the application. MapBasic creates the application file when you compile your program.
MapBasic application files typically have the extension .MBX (MapBasic eXecutable).

A command is an item that you choose from a menu. For example, to open a file, choose the Open
command from the File menu.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 16 MB_UG.pdf

User Guide Chapter 1: Getting Started

A statement is an instruction you can issue from a MapBasic program. For example, a MapBasic
program can issue a Select statement to select one or more rows from a table.

Typographical Conventions
The courier font shows sample MapBasic program statements:

Note "hello, world!”

Bold Capitalization identifies MapBasic keywords:
The Stop statement is used for debugging purposes.

In the examples that appear in this manual, the first letter of each MapBasic language keyword is
capitalized. However, you are not required to use the same capitalization when you type in your own
programs. If you prefer, you can enter your programs using upper case, lower case or mixed case.

References to menu commands in the MapBasic development environment use the greater-than sign
(>), as in the following example:

e Choose the File > New command to open a new edit window.

The expression “File > New” refers to the New command on the File menu.

Register Today!

If you haven'’t already done so, please fill in your product registration card. If you register, you can
receive newsletters and information about future upgrades.

Working with Technical Support

Technical Support is here to help you, and your call is important. This section lists the information you
need to provide when you call your local support center. It also explains some of the technical support
procedures so that you will know what to expect about the handling and resolution of your particular
issue.

Before You Call

Please have the following information ready when contacting us for assistance on Maplnfo
Professional.

1. Serial Number. You must have a registered serial number to receive Technical Support.

2. Your name and organization. The person calling must be the contact person listed on the
support agreement.

3. Version of the product you are calling about.

4. The operating system name and version.

5. A brief explanation of the problem. Some details that can be helpful in this context are:
e Error messages
e Context in which the problem occurs
e Consistency - is the problem reoccurring or occurring erratically?

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 17 MB_UG.pdf

User Guide Chapter 1: Getting Started

The Support Tracking System

The Support Tracking System is used internally by the Technical Support department to manage and
track customer issues. The system also provides the ability to track calls with accountability. This
system helps Tech Support respond to all customer issues effectively, efficiently, and fairly.

Expected Response Time

Most issues can be resolved during the customer’s initial call. If this is not possible, a response will be
issued before the end of the business day. A Technical Support representative will provide a status
each business day until the issue is resolved.

Support requests submitted by e-mail are handled using the same guidelines as telephone support
requests; however, there is an unavoidable delay of up to several hours for message transmission and
recognition.

Exchanging Information
Occasionally a Technical Support representative will ask you to provide sample data in order to

duplicate your scenario. In the case of our developer tools (such as MapX and MapXtreme), a small
subset of sample code may be requested to help duplicate the issue.

The preferred method of exchanging information is either via e-mail or our FTP site. Use following e-
mail addresses:

¢ United States - techsupport@mapinfo.com
e Europe - support-europe@mapinfo.com
e Australia - ozsupport@mapinfo.com

Software Defects

If the issue is deemed to be a bug in the software, the representative will log the issue in Maplinfo
Corporation’s bug base and provide you with an incident number that can be used to track the bug.
Future upgrades and patches have fixes for many of the bugs logged against the current version.

Other Resources

Maplinfo Test Drive Center

The Test Drive Center on Maplnfo Corporation’s Web site is a forum for technical users of our products
to learn about MaplInfo Corporation’s latest software offerings. You can download trial versions of
software, as well as obtain patches and fixes.

You'll need to complete a registration form to gain access to most areas of the Test Drive Center. This
is a one-time process. As new products and services become available in the Test Drive Center, you
will not need to re-register to access them. You can simply update your existing registration information
to indicate an interest in the new product.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 18 MB_UG.pdf

User Guide Chapter 1: Getting Started

Maplinfo-L Archive Database

Maplnfo Corporation, in conjunction with Bill Thoen, provides a web-based, searchable archive
database of MaplInfo-L postings. The postings are currently organized by Discussion Threads and
Postings by Date.

Disclaimer: While Maplnfo Corporation provides this database as a service to its user community,
administration of the MaplInfo-L mailing list is still provided by Bill Thoen. More information on Maplnfo-
L can be obtained at the MapInfo Test Drive Center (http://testdrive.mapinfo.com).

Mapinfo Automated Fax Support

MaplInfo Technical Support’'s Automated Fax Support system puts the latest Technical Support
solutions to common technical questions into your hands almost immediately. You can access
hundreds of technical documents on Maplnfo products using the system. These fax documents are
updated constantly to ensure that you are receiving the latest technical information. This service is
available 24 hours a day, 7 days a week, free of charge. No support agreement is required.

To use Automated Fax Support, all you need is a touch-tone phone and a fax machine. Here’s how:

e Call 518-285-7283, and choose option 4.

¢ Follow the simple instructions.

e Select a fax using a document number or receive an index of available documents.
* Enter your fax number and the selected documents will be delivered immediately.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 19 MB_UG.pdf

New and Enhanced
MapBasic Statements and
Functions

These are the new statements and functions available for the Maplinfo
Professional 8.0 product.

Sections in this Appendix:

+ New MapBasic Functions and Statements.............. 21
¢+ Enhanced MapBasic Functions and Statements......... 37

£ Maplnfo.

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

New MapBasic Functions and Statements

CartesianConnectObjects() function

Purpose
Returns an object representing the shortest or longest distance between two objects.

Syntax

CartesianConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.
Returns
This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.
Description

One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the objectLen () function. If there are
multiple instances where the minimum or maximum distance exists (for example, the two points
returned are not uniquely the shortest distance and there are other points representing "ties") then
these functions return one of the instances. There is no way to determine if the object returned is
uniquely the shortest distance.

CartesianClosestPoints () returns a Polyline object connecting object? and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a cartesian calculation method. If the calculation
cannot be done using a cartesian distance method (for example, if the MapBasic Coordinate System is
Lat Long), then this function will produce an error.

CartesianObjectDistance() function

Purpose

Returns the distance between two objects.

Syntax

CartesianObjectDistance (objectl, object2, unit name)
object1 and object2 are object expressions.
unit_name is a string representing the name of a distance unit.

Returns
Float

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 21 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Description
CartesianObjectDistance () returns the minimum distance between object1 and object2 using a
cartesian calculation method with the return value in unit_name. If the calculation cannot be done
using a cartesian distance method (for example, if the MapBasic Coordinate System is Lat Long), then
this function will produce an error.

ConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax

ConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.

Description

One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the objectLen () function. If there are
multiple instances where the minimum or maximum distance exists (for example, the two points
returned are not uniquely the shortest distance and there are other points representing "ties") then
these functions return one of the instances. There is no way to determine if the object returned is
uniquely the shortest distance.

ConnectObjects () returns a Polyline object connecting object? and object2 in the shortest (min ==
TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation cannot be
done using a spherical distance method (for example, if the MapBasic Coordinate System is
NonEarth), then a cartesian method will be used.

Farthest statement

Purpose

Find the object in a table that is farthest from a particular object. The result is a two-point Polyline
object representing the farthest distance.

Syntax

Farthest [N | ALL] From { Table fromtable | Variable fromvar }

To totable Into intotable

[Type { Spherical | Cartesian }]

[Ignore [Contains] [Min min value] [Max max value] Units unitname]
[Data clause]

N optional parameter representing the number of "farthest" objects to find. The defaultis 1. If a11 is
used, then a distance object is created for every combination.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 22 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

fromtable represents a table of objects that you want to find farthest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the farthest
distances from.

totable represents a table of objects that you want to find farthest distances to.
intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the infotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the infotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max sunclauses within it (for example, only a Min or only a Max,
or both may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

Description
Every object in the fromtable is considered. For each object in the fromtable, the farthest object in the
totable is found. If N is present, then the N farthest objects in totable are found. A two-point Polyline
object representing the farthest points between the fromtable object and the chosen fotable object is
placed in the intotable. If All is present, then an object is placed in the intotable representing the
distance between the fromtable object and each fotable object.

If there are multiple objects in the tfotable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second farthest object,
and 3 objects are requested, then the object will become the third farthest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 23 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

The Ignore clause can be used to limit the distances to be searched, and can effect how many
<totable> objects are found for each <fromtable> object. One use of the Min distance could be to
eliminate distances of zero. This may be useful in the case of two point tables to eliminate comparisons
of the same point. For example, if there are two point tables representing Cities, and we want to find
the closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the totable. This may be most useful in
conjunction with N or All. For example, we may want to search for the five airports that are closest to a
set of cities (where the fromtable is the set of cities and the fofable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we would
find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Farthest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Farthest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

Data Clause
Data IntoColumnl=columnl, IntoColumn2=column2
The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both fotable and fromtable, then the column in totable will
be used (for example, totable is searched first for column names on the right hand side of the equals).
To avoid any conflicts such as this, the column names can be qualified using the table alias:

Data namel=states. state_name, name2=county. state_name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN...
functionality from the menu or by using the Update MapBasic statement.

See Also

Nearest statement, ObjectDistance() function, ConnectObjects() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 24 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Nearest statement

Purpose
Find the object in a table that is closest to a particular object. The result is a 2 point Polyline object
representing the closest distance.

Syntax

Nearest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min value] [Max max value] Units unitname]
[Data clause]
N optional parameter representing the number of "nearest" objects to find. The defaultis 1. If a11 is

used, then a distance object is created for every combination.
fromtable represents a table of objects that you want to find closest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the closest
distances from.

totable represents a table of objects that you want to find closest distances to.
intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the infotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the infotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The 1gnore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max subclauses within it (for example, only a Min or only a Max,
or both may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 25 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Description

Every object in the fromtable is considered. For each object in the fromtable, the nearest object in the
totable is found. If N is present, then the N nearest objects in totable are found. A two-point Polyline
object representing the closest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the <intotable> representing the
distance between the fromtable object and each fotable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second closest object,
and three objects are requested, then the object will become the third closest object.

The types of the objects in the fromtable and fotable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many totable
objects are found for each fromtable object. One use of the Min distance could be to eliminate
distances of zero. This may be useful in the case of two point tables to eliminate comparisons of the
same point. For example, if there are two point tables representing Cities, and we want to find the
closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the <totable>. This may be most useful
in conjunction with N or a11. For example, we may want to search for the five airports that are closest
to a set of cities (where the fromtable is the set of cities and the tfotable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the 211 parameter, where we
would find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Nearest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min value < distance <= max value

This can allow ranges or distances to be returned in multiple passes using the Nearest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 26 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Data Clause
Data IntoColumnl=columnl, IntoColumn2=column?2
The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both fotable and fromtable, then the column in totable will
be used (for example, totable is searched first for column names on the right hand side of the equals).

To avoid any conflicts such as this, the column names can be qualified using the table alias:

Data namel=states.state_name, name2=county.state_ name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN...
functionality from the menu or by using the Update MapBasic statement.

Examples

Assume that we have a point table representing locations of ATM machines and that there are at least
two columns in this table: business which represents the name of the business which contains the ATM
and Address which represents the street address of that business. Assume that the current selection
represents our current location. Then the following will find the closest ATM:

Nearest From selection To atm Into result Data where=buisness,address=address

If we wanted to find the closest five ATM machines to our current location:

Nearest 5 From selection To atm Into result Data where=business,address=address

If we want to find all ATM machines within a 5 mile radius:

Nearest All From selection To atm Into result Ignore Max 5 Units "mi" Data
where=buisness, address=address

Assume we have a table of house locations (the fromtable) and a table representing the coastline (the
totable). To find the distance from a given house to the coastline:

Nearest From customer To coastline Into result Data
who=customer.name, where=customer.address, coast_loc=coastline.county, type=coastli
ne.designation

If we don't care about customer locations which are greater than 30 miles from any coastline:

Nearest From customer To coastline Into result Ignore Max 30 Units "mi" Data
who=customer.name, where=customer.address, coast loc=coastline.county, type=coastli
ne.designation

Assume we have a table of cities (the fromtable) and another table of state capitals (the totable), and
we want to find the closest state capital to each city, but we want to ignore the case where the city in
the fromtable is also a state capital:

Nearest From uscty 1k To usa_caps Into result Ignore Min 0 Units "mi" Data
city=uscty lk.name,capital=usa_ caps.capital

See Also
Farthest statement, ObjectDistance() function, ConnectObjects() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 27 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

ObjectDistance() function

Purpose
Returns the distance between two objects.

Syntax

ObjectDistance (objectl, object2, unit name)

object1 and object2 are object expressions.
unit_name is a string representing the name of a distance unit.

Returns
Float

Description

ObjectDistance () returns the minimum distance between object? and object2 using a spherical
calculation method with the return value in unit_name. If the calculation cannot be done using a
spherical distance method (for example, if the MapBasic Coordinate System is NonEarth), then a
cartesian distance method will be used.

ObjectNodeM() function

Purpose

Returns the m-value of a specific node in a region, polyline or multipoint object.

Syntax

ObjectNodeM(object, polygon num, node num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value
Float

Description

The ObjectNodeM() function returns the m-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the Objectinfo()
function to determine the number of polygons or sections in an object. The ObjectNodeM() function
supports Multipoint objects and returns the m-value of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which node should be
queried. You can use the Objectinfo() function to determine the number of nodes in an object. If object
does not support m values or m-value for this node is not defined, then, error is set.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 28 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i _obj type As Smalllnt,
z, m As Float
Open Table "routes"
Fetch First From routes
' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.
i obj type = ObjectInfo(routes.obj, OBJ INFO TYPE)
If i obj type = OBJ PLINE Then
! then the object is a polyline...
ObjectNodeZ (routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM (routes.obj, 1, 1) ' read m-value
End If

See Also
Querying map objects

Z

ObjectNodeZ() function

Purpose
Returns the z-coordinate of a specific node in a region, polyline, or multipoint object.
Syntax
ObjectNodeZ (object, polygon num, node num)
object is an Object expression
polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).
node_num is a positive Integer value indicating which node to read
Return Value
Float
Description
The ObjectNodeZ() function returns the z-value of a specific node from a region, polyline or multipoint

object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the Objectinfo()
function to determine the number of polygons or sections in an object. The ObjectNodeZ() function
supports Multipoint objects and returns the z-coordinate of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's
nodes should be queried. You can use the Objectinfo() function to determine the number of nodes in
an object.

If object does not support Z values or Z-value for this node is not defined then an error is thrown.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 29 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i _obj type As Smalllnt,
z, m As Float
Open Table "routes"
Fetch First From routes
' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.
i obj type = ObjectInfo(routes.obj, OBJ INFO TYPE)
If i obj type = OBJ PLINE Then
! then the object is a polyline...
ObjectNodeZ (routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM (routes.obj, 1, 1) ' read m-value
End If

Z

See Also

Querying map objects

Server Create Workspace statement

Purpose
Creates a new workspace in the database (Oracle 9i or later).

Syntax

Server ConnectionNumber Create
Workspace WorkspaceName
[Description Description]
[Parent ParentWorkspaceName]

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive, and it must be
unique.The length of a workspace name must not exceed 30 characters.

Description is a string to describe the workspace.

ParentWorkspaceName is the name of the workspace which will be the parent of the new workspace

WorkspaceName. By default, when a workspace is created, it is created from the topmost, or LIVE,
database workspace.

Description

This statement only applies to Oracle9i or later. The new workspace WorkspaceName is a child of the
parent workspace ParentWorkspaceName or LIVE if the Parent is not specified.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 30 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Examples

The following example creates a workspace named GARYG in the database.

Dim hdbc As Integer

hdbc = Server Connect ("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create

Workspace "MIUSER"

Description "MIUser private workspace"

The following example creates a child workspace under MIUSER in the database.

Dim hdbc As Integer

hdbc = Server_Connect("ORAINET", "SRVR=TROYNY ; UID=MIUSER; PWD=MIUSER")
Server hdbc Create Workspace "MBPROG" Description "MapBasic project" Parent
"MIUSER"

See also

Server Remove Workspace statement, Server Versioning statement

Server Remove Workspace statement

Purpose
Discards all row versions associated with a workspace and deletes the workspace in the database
(Oracle 9i or later).

Syntax

Server ConnectionNumber Remove
Workspace WorkspaceName

ConnectionNumber is an integer value that identifies the specific connection.
WorkspaceName is the name of the workspace. The name is case sensitive.

Description

This statement only applies to Oracle9i or later. This operation can only be performed on leaf
workspaces (the bottom-most workspaces in a branch in the hierarchy). There must be no other users
in the workspace being removed.

Examples
The following example removes the MIUSER workspace in the database.

Dim hdbc As Integer
hdbc = Server Connect ("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Remove Workspace "MIUSER"

See also

Server Create Workspace statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 31 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Server Versioning statement

Purpose

Version-enable or disable a table on Oracle 9i or later, which creates or deletes all the necessary
structures to support multiple versions of rows to take advantage of Oracle Workspace Manager.

Syntax

Server ConnectionNumber Versioning

{

ON

[History {SRV_WM HIST NONE|SRV_WM HIST OVERWRITE|SRV_WM HIST NO OVERWRITE}]
| OFF

[Force {OFF | ON }]
}

Table ServerTableName

oN | oFF indicates to enable (when it is ON) a table versioning or disable (when it is OFF) a table
versioning.

ConnectionNumber is an integer value that identifies the specific connection.

ServerTableName is the name of the table on Oracle server to be version-enabled/disabled. The length
of a table name must not exceed 25 characters. The name is not case sensitive.

When version-enabling a table (ON), History is an optional parameter.

History clause specifies how to track modifications to ServerTableName, i.e., lets you timestamp
changes made to all rows in a version-enabled table and to save a copy of either all changes or only
the most recent changes to each row. Must be one of the following constant values:

* srv_wM_HIST NONE (0): No modifications to the table are tracked. (This is the default.)

* SRV_WM HIST OVERWRITE (1): The with overwrite (W_OVERWRITE) option. A view named
ServerTableName _HIST is created to contain history information, but it will show only the most
recent modifications to the same version of the table. A history of modifications to the version
is not maintained; that is, subsequent changes to a row in the same version overwrite earlier
changes. (The CREATETIME column of the TableName_HIST view contains only the time of
the most recent update.)

* SRV_WM HIST NO OVERWRITE (2): The without overwrite (WO_OVERWRITE) option. A view
named ServerTableName_HIST is created to contain history information, and it will show all
modifications to the same version of the table. A history of modifications to the version is
maintained; that is, subsequent changes to a row in the same version do not overwrite earlier
changes. However, there are many restrictions on tables to use this option. Please refer the
Oracle9i Application Developer’s Guide - Workspace Manager for more information.

When disabling a version-enabled table (OFF), Force is an optional parameter.

If Force is set ON, all data in workspaces other than LIVE is to be discarded before versioning is
disabled. OFF (the default) prevents versioning from being disabled if ServerTableName was modified
in any workspace other than LIVE and if the workspace that modified ServerTableName still exists.

Description

This statement only applies to Oracle9i or later. The table, ServerTableName, that is being version-
enabled must have a primary key defined. Only the owner of a table or a user with the WM_ADMIN role
can enable or disable versioning on the table. Tables that are version-enabled and users that own

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 32 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

version-enabled tables cannot be deleted. You must first disable versioning on the relevant table or
tables. Tables owned by SYS cannot be version-enabled. Refer to the Oracle9i Application
Developer’s Guide - Workspace Manager for more information.

Examples
The following example enables versioning on the MIUUSAS table.

Dim hdbc As Integer
hdbc = Server Connect ("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")

Server hdbc Versioning ON Table "MIUUSA3"
or
Server hdbc Versioning ON History 1 Table "MIUUSA3"

The following example disables versioning on the MIUUSAS table.

Dim hdbc As Integer
hdbc = Server Connect ("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")

Server hdbc Versioning OFF Force ON Table "MIUUSA3"
See also
Server Create Workspace statement

Server Workspace Merge statement

Purpose
Applies changes to a table (all rows or as specified in the Where clause) in a workspace to its parent

workspace in the database (Oracle 9i or later).

Syntax

Server Workspace Merge
Table TableName
[Where WhereClausel
[RemoveData {OFF | ON }]
[{Interactive | Automatic merge keyword}]

TableName is the name (alias) of an open Maplnfo table from an Oracle9i or later server. The table
contains rows to be merged into its parent workspace.

WhereClause identifies the rows to be merged into the parent workspace. The clause itself should omit
the WHERE keyword.

Example:
‘MI_PRINX = 20’.Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are merged.

If RemoveData is set ON, the data in the table (as specified by WhereClause) in the child workspace
will be removed. This option is permitted only if workspace has no child workspaces (that is, it is a leaf
workspace). OFF (the default) does not remove the data in the table in the child workspace.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 33 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

If there are conflicts between the workspace being merged and its parent workspace, the user must
resolve conflicts first in order for merging to succeed. Maplinfo Professional allows the user to resolve
the conflicts first and then to perform the merging within the process. The following clauses let you
control what happens when there is a conflict. These clauses have no effect if there is no conflict
between the workspace being merged and its parent workspace.

Interactive

In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one or all together based on user choices. After all the conflicts are resolved, the table
is merged into its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase

In the event of a conflict, Mapinfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged, the base rows are copied to the parent workspace
too.) Note that BASE is ignored for insert-insert conflicts where a base row does not exist; in this case
the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, Mapinfo uses the parent workspace values.

Description
This statement only applies to Oracle9i or later. All data that satisfies the WhereClause in TableName
is applied to the parent workspace. Any locks that are held by rows being merged are released. If there
are conflicts between the workspace being merged and its parent workspace, this operation provides
user options on how to solve the conflict. The merge operation was executed only after all the conflicts
were resolved. A table cannot be merged in the LIVE workspace (because that workspace has no
parent workspace). A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

Refer to Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples
The following example merge changes to USA where MI_PRINX=5 in MIUSER to its parent
workspace.
Server Workspace Merge
Table "GWMUSA2"

Where "MI PRINX = 60"
Automatic UseCurrent

See Also
Server Workspace Refresh statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 34 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Server Workspace Refresh statement

Purpose

Applies all changes made to a table (all rows or as specified in the Where clause) in its parent
workspace to a workspace in the database (Oracle 9i or later).

Syntax

Server Workspace Refresh
Table TableName
[Where WhereClausel
[{Interactive | Automatic merge keyword}]
TableName is the name (alias) of an open Maplnfo table from an Oracle9i or later server. The table
contains rows to be refreshed using values from its parent workspace.

WhereClause identifies the rows to be refreshed from the parent workspace. The clause itself should
omit the WHERE keyword.

Example:

'MI_PRINX = 20’.Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are refreshed.

If there are conflicts between the workspace being refreshed and its parent workspace, the user must
resolve conflicts first in order for refreshing to succeed. MaplInfo Professional allows the user to resolve
the conflicts first and then to perform the refreshing within the process. The following clauses let you
control what happens when there is a conflict. These clauses has no effect if there is no conflict
between the workspace being refreshed and its parent workspace.

Interactive

In the event of a conflict, Mapinfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one based on user choices. After all the conflicts are resolved, the table is refreshed
from its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict

In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase

In the event of a conflict, Mapinfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged to it parent, the base rows will be copied to the
parent workspace.) Note that BASE is ignored for insert-insert conflicts where a base row does not
exist; in this case the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, Mapinfo uses the parent workspace values.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 35 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Description
This statement only applies to Oracle9i or later. It applies to workspace all changes in rows that satisfy
the WhereClause in the table in the parent workspace from the time the workspace was created or last
refreshed. If there are conflicts between the workspace being refreshed and its parent workspace, this
operation provides user options on how to solve the conflict. The refresh operation is executed only
after all the conflicts are resolved. A table cannot be refreshed in the LIVE workspace (because that
workspace has no parent workspace). A table cannot be merged or refreshed if there is an open
database transaction affecting the table.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example refreshes MIUSER by applying changes made to USA where MI_PRINX=5 in
its parent workspace.

Server Workspace Refresh
Table "GWMUSA2"
Where "MI PRINX = 60"
Automatic UseParent

See also

Server Workspace Merge statement

SphericalConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
SphericalConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.

Description

One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the cbjectLen () function. If there are
multiple instances where the minimum or maximum distance exists (for example, the two points
returned are not uniquely the shortest distance and there are other points representing "ties") then
these functions return one of the instances. There is no way to determine if the object returned is
uniquely the shortest distance.

SphericalConnectObjects () returns a Polyline object connecting object? and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation
cannot be done using a spherical distance method (for example, if the MapBasic Coordinate System is
NonEarth), then this function will produce an error.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 36 MB_UG.pdf

User Guide

Chapter 2: New and Enhanced MapBasic Statements and Functions

SphericalObjectDistance() function

Purpose
Returns the distance between two objects.

Syntax
SphericalObjectDistance (objectl,

object2, unit name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

SphericalObjectDistance () returns the minimum distance between object? and object2 using a
spherical calculation method with the return value in unit_name. If the calculation cannot be done using
a spherical distance method (for example, if the MapBasic Coordinate System is NonEarth), then this
function will produce an error.

Enhanced MapBasic Functions and Statements

Add Cartographic Frame statement

Window legend window id]
Custom]

Default Frame Title { def frame title } [Font...]]

[
[
[
[Default Frame Subtitle { def frame subtitle } [Font...]]

[Default Frame Style { def frame style } [Font...]]

[Default Frame Border Pen... pen expr]

Frame From Layer { map layer id | map_layer name

[Using

[Column { column | object [FromMapCatalog { On | Off }1} 1

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

37 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Examples
Creating on live access table that supports per record styles with map styles:

Create Cartographic Legend From Window 168811024
Scrollbars On

Portrait Style Size Large

Default Frame

Title "# Legend"

Font ("Arial",0,10,0)

Default Frame Style "%"

Font ("Arial",0,8,0)

Frame From Layer 1

Title "nyalbap Legend"

Using column object FromMapCatalog OFF label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On

Portrait Style Size Large

Default Frame

Title "# Legend"

Font ("Arial",0,10,0)

Default Frame Style "&"

Font ("Arial",0,8,0)

Frame From Layer 1

Title "tony nyalbap Legend"

Using column object FromMapCatalog ON label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On

Portrait Style Size Large

Default Frame Title "# Legend"

Font ("Arial",0,10,0)

Default Frame Style "%"

Font ("Arial",0,8,0)

Frame From Layer 1 Title "nyalbap Legend"

Using column class label default

Workspace Behavior

When you save to a workspace, the new FromMapCatalog OFF clause is written to the workspace
when specified. This requires the workspace to bumped up to 800. If the FromMapCatalog ON clause is
specified we do not write it to the workspace since it is default behavior. This lets us avoid bumping up
the workspace version in this case.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 38 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Alter Object statement

Syntax

Alter Object obj
{ Info object info code, new_info value |
Geography object geo code, new _geo_value |
Node { Add [Position polygon num, node num] (x, y) |
Set Position polygon num, node num (x, y) |
Remove Position polygon num, node num

}

polygon _num is an Integer value (one or larger), identifying one polygon from a region object or one
section from a polyline object.

Create Cartographic Legend statement

Syntax

Create Cartographic Legend

From Window map window id]

Behind]

Position (x , y) [Units paper units]]
Width win width [Units paper units]]
Height win height [Units paper units]]
Window Title { legend window title }
ScrollBars { On | Off }]

Portrait | Landscape | Custom]

Style Size {Small | Large}

Default Frame Title { def frame title } [Font...] }]
Default Frame Subtitle { def frame subtitle } [Font...] }]
Default Frame Style { def frame style } [Font...] }]
Default Frame Border Pen [[pen expr]

Frame From Layer { map layer id | map layer name

[Using

[Column { column | object [FromMapCatalog { On | Off }1} 1

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog 0ff (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 39 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Create Collection statement

Syntax

Create Collection [num parts]
[Into { Window window_id | Variable var name }]
Multipoint
[num points]
(x1, v1) (x2, v2) [...]
[Symbol . . .]
Region
num polygons
[num pointsl (x1, y1) (x2, y2) [... 1]
[num points2 (x1, y1) (x2, y2) [... 1 ... 1
[Pen ...]
[Brush ...]
[Center (center x, center y)]
Pline
[Multiple num sections]
num_points
(x1, v1) (x2, v2) [...]
[Pen ...]
[Smooth ...]

num_polygons is the number of polygons inside the Collection object.

num_sections specifies how many sections the multi-section polyline will contain.

Create Pline statement

Syntax

Create Pline
[Into { Window window_id | Variable var name }]
[Multiple num sections]

num points
(x1, v1) (x2, y2) [...]
[Pen ...]
[Smooth]

num_sections specifies how many sections the multi-section polyline will contain.

Create Region statement

Syntax

Create Region
[Into { Window window_id | Variable var name }]
num polygons

[num pointsl (x1, y1) (x2 , y2) [... 1]

[num points2 (x1, y1) (x2 , y2) [... 1 ... 1]
[Pen ...]
[Brush ...]

[Center (center x, center y)]

num_polygons specifies the number of polygons that will make up the region (zero or more).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 40

MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Commit Table statement

Here is the syntax with the new convertobjects keyword in bold:

Commit Table table
[As filespec
[Type { NATIVE |

DBF [Charset char set] |

Access Database database filespec

Version version Table tablename
[Password pwd] [Charset char set] |

QUERY
ODBC Connection ConnectionNumber Table tablename

}l
[CoordSys...]
[Version version] 1]
[{ Interactive | Automatic commit keyword }]
[ConvertObjects {ON | OFF | INTERACTIVE }]

ExtractNodes() function

ExtractNodes (object, polygon index, begin node, end node, b _region)

polygon_index is an Integer value, 1 or larger: for region objects. This indicates which polygon (for
regions) or section (for polylines) to query.

Import statement

Syntax

Import file name
[Type "GML21"]
[Layer layer name]
[Into table name]
[Overwrite]
[Coordsys clause]

file_name is the name of the GML 2.1 file to import.
Type is "aML21" for GML 2.1 files.

layer_name is the name of the GML layer.
table_name is the MaplInfo table name.

overwrite causes the TAB file to be automatically overwritten. If Overwrite is not specified, an error
will result if the TAB file already exists.

The Coordsys clause is optional. If the GML file contains a supported projection and the Coordsys
clause is not specified, the projection from the GML file will be used. If the GML file contains a
supported projection and the Coordsys clause is specified, the projection from the Coordsys clause will
be used. If the GML file doesn’t contain a supported projection, the Coordsys clause must be specified.

Note: If the Coordsys clause does not match the projection of the GML file, your data may not import
correctly. The coordsys must match the coordsys of the data in the GML file. It will not
transform the data from one projection to another.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 41 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Example

Import "D:\midata\GML\GML2.1l\mi usa.xml" Type "GML21" layer "USA" Into
"D:\midata\GML\GML2.1\mi_usa_USA.TAB" Overwrite CoordSys Earth Projection 1, 104

The following functions have been updated for this release.

ObjectGeography() function

attribute setting Return value (Float)
OBJ_GEO_POINTZ z-value of a Point object.
OBJ_GEO_POINTM m-value of a Point object.

If object does not support z/m values or z/m-value for this node is not defined, then an error is thrown.

Objectinfo() function
Syntax
ObjectInfo(object, attribute)

object is an Object expression
attribute is an integer code specifying which type of information should be returned.

Return value

OBJ_INFO NPOLYGONS (21) is an Integer that indicates the number of polygons (in the case of a region)
or sections (in the case of a polyline) which make up an object.

OBJ_INFO NPOLYGONS+N (21)is an Integer that indicates the number of nodes in the Nth polygon of a
region or the Nth section of a polyline.

Note: With region objects, MaplInfo Professional counts the starting node twice (once as the start
node and once as the end node). For example, Objectinfo returns a value of 4 for a triangle-
shaped region.

attribute setting Return value

OBJ_INFO_Z UNIT_SET(12) | Logical, indicating whether Z units are defined.

OBJ_INFO_Z_UNIT(13) String result: indicates distance units used for Z-values.
Return empty string if units are not specified.
OBJ_INFO_HAS_Z(14) Logical, indicating whether object has Z values.
OBJ_INFO_HAS_M(15) Logical, indicating whether object has M values.
MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 42 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

ObjectNodeX() function

Syntax

ObjectNodeX(object, polygon num, node num)
object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

ObjectNodeY() function

Syntax

ObjectNodeY(object, polygon num, node num)
object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

Register Table statement

Syntax

Register Table source file

Type "ODBC" [Cache { On | OFF }]
Connection { Handle ConnectionNumber | ConnectionString }
Toolkit toolkitname
Table SQLQuery
[Versioned {Off | On}]
[Workspace WorkspaceName]
[ParentWorkspace ParentWorkspaceName]

Versioned indicates if the table to be opened is an version-enabled (ON) table or not (OFF).
WorkspaceName is the case-sensitive name of the current workspace in which the table is operated.

ParentWorkspaceName is the name of parent workspace of the current workspace.

Note: In order to use have this statement be effective, the table has to be version-enabled, i.e.,
Versioned is set ON.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 43 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Examples

The following example create a tab file and then open the tab file.

Register Table "Gwmusa" TYPE ODBC
TABLE "Select * From ""MIUSER"".""GWMUSA"""
CONNECTION "SRVR=troyny;UID=miuser;PWD=miuser"
toolkit "ORAINET"
Versioned On
Workspace "MIUSER"
ParentWorkspace "LIVE"
Into "C:\projects\data\testscripts\english\remote\Gwmusa.tab"

Open Table "C:\Projects\Data\TestScripts\English\remote\Gwmusa.TAB" Interactive
Map From Gwmusa
See Also

Server Create Workspace statement

Set Cartographic Legend statement

Syntax

Set Cartographic Legend
[Window window_id]
[Refresh]
[Portrait | Landscapel
[Columns number of columns | Lines number of lines]

number_of-columns specifies the width of the legend.

number_of_lines specifies the height of the legend.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 44 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Set Legend statement

Purpose

The Set Legend command is used to provide custom ordering of legend categories or items. The new
syntax is in bold.

Syntax

Set Legend
[Window window_id]
[Layer { layer_id | layer name | Prev }
Display { On | Off }]
Shades { On | Off } 1
Symbols { On | Off }]
Lines { On | Off }]
Count { On | Off }]
Title { Auto | layer title [Font . . . 1 } 1
SubTitle { Auto | layer_ subtitle [Font . . .] }]
Style Size {Large | Small | Fontsize}]
Columns number of columns]
Ascending { On | Off } | Order { Ascending | Descending | Custom }]
Ranges { [Font . . .]
[Range { range identifier | default }]
range title [Display { On | Off } 1 }
L, .. .1

L, .. .1

There are four new clauses: Order, Range, Style Size, and Columns. When you want custom order,
include order customin the MapBasic statement as well as a range identifier for each category in the
theme. The order of ranges dictates the order of categories in the legend. The range identifier is the
same const string or value used by the Values clause in the Shade statement that creates the
Individual Value theme.

The Order and Range clauses will increase the workspace version to 8.0. Old workspaces will still
parse correctly as there is still support for the original Ascending clause. If the order is not custom,
Mapinfo Professional will write out the original Ascending clause and NOT increase the workspace
version.

The Order clause is a new way to specify legend label order of ascending or descending as well as
new custom order. However, the original Ascending { On | Off } clause is still available for backwards
compatibility. You can use either the new Order clause, or the old Ascending clause, but not both (both
clauses cannot be included in the same MapBasic statement or you will get a syntax error).

The Custom option for the Order clause is allowed only for Individual Value themes. An error will occur
if you try to custom order other theme types. The error is “Custom legend label order is only

allowed for Individual Value themes.”

When the Order is Custom, each range in the Ranges clause must include a range identifier, otherwise
a syntax error will occur. The range identifier must come before the range title and Display clause. The
range identifier is the same const string or value used by the Values clause in the Shade statement that
creates the Individual Value theme. The range identifier for the "all others" category is 'default'.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 45 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Every category in the theme must be included, including the default or "all others" category, otherwise

an error will occur. The error is "Incorrect number of ranges specified for custom order.'

The default or "all others" category may also be reordered, although the best place to place this

argument is at the end or beginning of the Ranges clause.

If the range identifier does not refer to a valid category an error will occur. The erroris "Invalid range

value for custom order."

The Style Size clause facilitates thematic swatches to appear in different sizes.

The Columns clause allows you to specify the width of the legend. number_of-columns indicates the

column width.

Examples

The example workspace below needs the following shade statement:

shade 1 with Province Name values
"Alberta" Brush (2,16711680,16777215)

"Ontario" Brush (2,128,16777215) Pen

"Prince Edward Island" Brush (2,8388736,16777215)
"Quebec" Brush (2,8421376,16777215) Pen (1,2,0)
"Saskatchewan" Brush (2,32896,16777215)
"Yukon Territory" Brush (2,16744576,16777215)
default Brush (1,0,16777215) Pen (1,2,0)

Pen (1,2,0)
"British Columbia" Brush (2,65280,16777215)
"Manitoba" Brush (2,255,16777215) Pen (1,2,0)
"New Brunswick" Brush (2,16711935,16777215)
"Newfoundland" Brush (2,16776960,16777215)
"Northwest Territories" Brush (2,65535,16777215)
"Nova Scotia" Brush (2,8388608,16777215)
"Nunavut" Brush (2,32768,16777215) Pen

Pen (1,2,0)

Pen (1,2,0)

color 1

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 46

MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

The Set Legend statement includes the Order Custom tokens and a Range identifier for each category.
The Range identifier is the same string found in the shade statement and the order of ranges is what is
displayed in the Legend. (New information is in bold.)

set legend
layer 1

display on

shades on

symbols off

lines off

count on

title auto Font ("Arial",0,9,0)

subtitle auto Font ("Arial",0,8,0)

order custom

ranges Font ("Arial",0,8,0)
range "Prince Edward Island" auto display on ,
range "Northwest Territories" auto display on ,
range "British Columbia" auto display on ,
range "Yukon Territory" auto display on ,
range "New Brunswick" auto display on ,
range "Newfoundland" auto display on ,
range "Saskatchewan" auto display on ,
range "Nova Scotia" auto display on ,
range "Manitoba" auto display on ,
range "Nunavut" auto display on ,
range "Ontario" auto display on ,
range "Quebec" auto display on ,
range "Alberta" auto display on ,
range default auto display off

Enabling Transparent Patterns on Same Layer

In order to facilitate a multi-thematic analysis on a particular layer, transparent patterns are necessary.
To facilitate this, the Shade statement and the Set Shade statement now have the addition of a style
Replace clause for use with for Range and Individual Value themes. The syntax for the new clause is
as follows:

{style Replace { On | Off } }

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

Export Windows to Additional Formats

The Save Window statement now supports three additional formats for image export. The new values
for type include: "TIFFG4", "TIFFLZW", and "GIF".

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 47 MB_UG.pdf

User Guide Chapter 2: New and Enhanced MapBasic Statements and Functions

Examples

save window frontwindow() as "untitled.gif" type "gif"
save window frontwindow() as "untitled.tif" type "tiffg4"
save window frontwindow() as "untitled.tif" type "tifflzw"

Tablelnfo() function

attribute code Tablelnfo() returns

TAB_INFO_SUPPORT_MZ Logical result: TRUE if table supports M and Z values.

TAB_INFO_Z UNIT_SET Logical result: TRUE is unit is set for Z-values.

TAB_INFO_Z_UNIT String result: indicates distance units used for Z-values.
Return empty string if units are not specified.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 48 MB_UG.pdf

A Quick Look at MapBasic

MapBasic is a software package that lets you customize and automate
the Maplnfo desktop-mapping software.

Sections in this Chapter:

¢ GettingStarted i 50
¢+ What Are the Key Features of MapBasic?.............. 51
¢ HowDolLearnMapBasic?..................ccciuunn. 52
¢ The MapBasic Window in MapInfo 54

£ Maplnfo.

User Guide Chapter 3: A Quick Look at MapBasic

Getting Started

The MapBasic software provides you with a development environment. Using this development
environment, you can write programs in the MapBasic programming language.

The MapBasic development environment includes:

e Atext editor you can use to type your programs. If you already have a text editor you would
rather use, you can use that editor instead of the MapBasic text editor. For details, see Using
the Development Environment on page 56.

e The MapBasic compiler. After you have written a program, compile it to produce an
“executable” application (i.e., an application that can be run by Maplinfo).

* The MapBasic linker. If you are creating a large, complex application, you can divide your
program into separate modules, then “link” those modules together into one application.

¢ MapBasic online help, providing reference information for each statement and function in the
MapBasic language.

e From looking at the name, you might expect the MapBasic programming language to be
reminiscent of traditional BASIC languages. In fact, MapBasic programs do not look much like
traditional BASIC programs. MapBasic does, however, bear a resemblance to newer versions
of BASIC which have been developed in recent years (for example, Microsoft’s Visual Basic
language). Newer BASICs, such as Visual Basic and MapBasic, resemble Pascal more than
traditional BASIC.

A Traditional BASIC Code Sample A MapBasic Code Sample
20 GOSUB 3000 Call Check_Status(quit_time)
30 IF DONE =1 THEN GOTO 90 Do While Not quit_time
40FORX=1TO 10 Forx=1To 10
50 GOSUB 4000 Call Process_batch(x)
60 NEXT X Next
80 GOTO 30 Loop

Every MapBasic program works in conjunction with Maplnfo. First, you use the MapBasic development
environment to create and compile your program; then you run Maplinfo when you want to run your
program. Thus, a MapBasic program is not a stand-alone program; it can only run when Maplnfo is
running. You could say that a MapBasic program runs on top of Maplinfo.

However, MapBasic is not merely a macro language, MapBasic is a full-featured programming
language, with over 300 statements and functions. Furthermore, since MapBasic programs run on top
of Maplnfo, MapBasic is able to take advantage of all of MapInfo’s geographic data-management
capabilities.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 50 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic

How Do | Create and Run a MapBasic Application?

Chapter 4: Using the Development Environment provides detailed instructions on creating a
MapBasic application.

If you're in a hurry to get started, you can create your first program by following these steps:

1. Run the MapBasic development environment.
2. Choose FILE > NEW to open an edit window.

3. Type a MapBasic program into the edit window. If you do not have a program in mind, you can
enter the following one-line MapBasic program:

4. Note “Welcome to MapBasic!”

5. Choose FILE > SAVE to save the program to a file. Enter a file name such as welcome.mb.
Note: Do not close the Edit window.

6. Choose PROJECT > COMPILE CURRENT FILE. MapBasic compiles your program (welcome.mb),
and then creates a corresponding executable application file (welcome.mbx).

7. Run Maplnfo.

8. Choose TooLs > RuN MaPBAsic PROGRAM. Maplinfo prompts you to choose the program you
want to run. If you select welcome.mbx, Maplnfo runs your program, which displays the
message, “Welcome to MapBasic!” in a dialog box.

Those are the main steps involved in creating, compiling, and running a MapBasic application. In
practice, of course, the process is more complex. For example, the procedure outlined above does not
describe what happens if you encounter a compilation error. For more details on creating and
compiling MapBasic programs, see Chapter 4: Using the Development Environment.

What Are the Key Features of MapBasic?

MapBasic Lets You Customize Maplinfo

Through MapBasic, you can customize the MaplInfo user-interface. A MapBasic application can modify
or replace the standard MaplInfo menus, add entirely new menus to the MapInfo menu bar, and present
the user with dialogs custom-tailored to the task at hand.

Thus, MapBasic lets you create turn-key systems, custom-tailored systems that help the user perform
tasks quickly and easily, with minimal training.

MapBasic Lets You Automate Mapinfo

MapBasic applications are often used to spare end-users the tedium of doing time-consuming manual
work. For example, a MaplInfo user may need to develop a graticule (a grid of horizontal and vertical
longitude and latitude lines) in the course of producing a map. Drawing a graticule by hand is tedious,
because every line in the graticule must be drawn at a precise latitude or longitude. However, a
MapBasic application can make it very easy to produce a graticule with little or no manual effort.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 51 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic

MapBasic Provides Powerful Database-Access Tools

You can perform complex, sophisticated database queries with a single MapBasic statement. For
example, by issuing a MapBasic Select statement (which is modeled after the Select statement in the
SQL query language), you can query a database, apply a filter to screen out any unwanted records,
sort and sub-total the query results. All of this can be accomplished with a single MapBasic statement.

Using powerful MapBasic statements like Select and Update, you can accomplish in a few lines of
code what might take dozens or even hundreds of lines of code using another programming language.

MapBasic Lets You Connect Mapinfo To Other Applications

You are not limited to the statements and functions that are built into the MapBasic programming
language. Because MapBasic provides open architecture, your programs can call routines in external
libraries. If you need functionality that isn’t built into the standard MapBasic command set, MapBasic’s
open architecture lets you get the job done.

MapBasic programs can use Dynamic Data Exchange (DDE) to communicate with other software
packages, including Visual Basic applications. MapBasic programs also can call routines in Windows
Dynamic Link Library (DLL) files. You can obtain DLL files from commercial sources, or you can write
your own DLL files using programming languages such as C or Pascal. MapBasic provides Integrated
Mapping, that lets you integrate Maplnfo functionality into applications written using other development
environments, such as Visual Basic. For details see Chapter 12: Integrated Mapping.

How Do | Learn MapBasic?

If you have not already done so, you should learn how to use Maplnfo before you begin working with
MapBasic. This manual assumes that you are familiar with Maplnfo concepts and terminology, such as
tables, Map windows, and workspaces.

Once you are comfortable using Maplnfo, you can use the following printed and online instructional
materials to help you learn about MapBasic.

MapBasic User Guide

This book explains the concepts behind MapBasic programming. Read the User Guide when you are
learning how to program in MapBasic.

Each chapter in the User Guide discusses a different area of programming. For example, Chapter 7:
Creating the User Interface explains how to create a user interface (custom menus and dialog
boxes), while Chapter 9: File Input/Output tells you how to perform file input/output. Every MapBasic
programmer should read Chapter 5: MapBasic Fundamentals.

MapBasic Reference

This A-to-Z reference contains detailed information about every statement and function in the
MapBasic language. Use the Reference when you need a complete description of a particular
statement or function.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 52 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic

Sample Programs

Many programmers find that the best way to learn a programming language is to study sample
programs. Accordingly, MapBasic comes with a library of sample programs. See the Samples folder
installed on your MapBasic CD for sample programs included with MapBasic.

Note: The MapBasic User Guide frequently refers to the TextBox sample program (textbox.mb). You
may want to become familiar with this program before you learn MapBasic. See Appendix B for
a listing of the TextBox program.

MaplInfo Workspace Files

Maplinfo can save session information (for example, the list of what tables and windows are open) in a
workspace file. If you use a text editor to examine a workspace file, you will see that the workspace

contains MapBasic statements. You can copy MapBasic statements out of a workspace file, and paste
the statements into your program. In a sense, any Maplnfo workspace is a sample MapBasic program.

For example, suppose you want to write a MapBasic program that creates an elaborate page layout.
You could create the page layout interactively, using Maplinfo, and save the layout in a Mapinfo
workspace file. The workspace file would contain a set of MapBasic statements relating to page
layouts. You then could copy the layout-related statements from the workspace file, and paste the
statements into your MapBasic program.

Online Help

The MapBasic development environment provides extensive online Help. Much of the online Help is
reference information, providing descriptions of every statement and function in the language. The
Help file also provides instructions on using the MapBasic development environment.

Tip: as you are typing in your program, if you select a statement or function name and press F1, the
Help window shows you help for that statement or function.

The Help system contains many brief sample programs which you can copy from the Help window and
paste into your program. You can copy text out of the Help window by clicking and dragging within the
Help window.

If you are viewing a Help screen and you click on a MapBasic menu or a MapBasic edit window, the
Help window disappears. This is standard behavior for Windows Help. The Help window has not been
closed, it is simply in the background. Note that you can return to the Help window by pressing ALT-
TAB. You can also prevent the Help window from disappearing by checking the Help window’s HELP >
ALWAYS on Top menu item.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 53 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic

The MapBasic Window in Maplinfo

The Maplnfo software provides a feature known as the MapBasic window. This window can help you
learn the syntax of statements in the MapBasic language.

To open the MapBasic window:

1. Run Maplnfo
2. Choose Options > Show MapBasic Window.

The MapBasic window appears on the screen. Thereafter, as you use MaplInfo’s menus and dialogs,
the MapBasic window displays corresponding MapBasic statements.

For example, if you perform a query by using MapInfo’s Select dialog, the MapBasic window
automatically shows you how you could perform the same operation through statements in the
MapBasic language.

You can also enter statements directly into the MapBasic window, although not all MapBasic
statements may be executed in this manner. To determine if a statement may be issued through the
MapBasic window, consult the MapBasic Reference. Statements that are not supported through the
MapBasic window are identified by a notice that appears under the Restrictions heading. As a general
rule, you cannot enter flow-control statements (for example, For...Next loops) through the MapBasic
window.

The MapBasic window is also a debugging tool. For details, see Chapter 6: Debugging and Trapping
Runtime Errors.

Training and On-Site Consulting

MaplInfo Corporation offers MapBasic training classes. If you want to become proficient in MapBasic as
quickly as possible, you may want to attend MapBasic training. To ensure an ideal training
environment, class size is limited to eight to ten people. For information on scheduled classes, call
MaplInfo Professional Services.

If you require extensive assistance in developing your MapBasic application, you may be interested in
Maplnfo’s Consulting Services. You can arrange to have MapBasic systems engineers work on-site
with you. For additional information, call MaplInfo Professional Services.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 54 MB_UG.pdf

User Guide Chapter 3: A Quick Look at MapBasic

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 55 MB_UG.pdf

Using the Development
Environment

The MapBasic software includes a text editor you can use to type your
program. Conventional menu items (for example, Undo, Copy, Paste)
make it easy to edit your program. Other menu items let you compile
(and, optionally, link) your program(s) into executable form. Online help
for the MapBasic language is available as well.

The MapBasic text editor, MapBasic compiler, and MapBasic online help
are collectively known as the development environment.

Sections in this Chapter:

¢ Introduction to MapBasic Development Environment 57
¢ Editing Your Program.t 57
¢ CompilingYourProgram................c.ciiinann. 60
¢ Linking Multiple Modules Into a Single Project.......... 62

¢ Menu Summary in MapBasic Development Environment . 66

£ Maplnfo.

User Guide Chapter 4: Using the Development Environment

Introduction to MapBasic Development Environment

The MapBasic development environment contains a built-in text editor that you can use to create and
edit MapBasic programs. Pull-down menus — File, Edit, Search, Project, Window, and Help —
provide you with everything you need to create and edit programs, compile them, and handle any
syntax errors detected by the MapBasic compiler.

If you are familiar with other text editors, you will find MapBasic’s text editor easy to use. Most of the
MapBasic menus are predictable: the File menu contains Open, Close, Print, and Save commands,
while the Edit menu contains Undo, Cut, Copy, and Paste commands. However, MapBasic also
contains elements not found in conventional text editors (for example, a compiler and a linker).

Editing Your Program

If you have not already done so, run MapBasic. Then, from the File menu, either choose Open (to
display an existing program) or New (to open a blank edit window).

Type your program into the edit window. If you don’t yet have a program to type in, you can use the
following one-line sample MapBasic program:

Note ”"Welcome to MapBasic!”

Once you have typed in your program, you can save your program to disk by choosing Save from the
File menu. Give your program a name such as welcome.mb.

MapBasic automatically appends the file extension .mb to program files. Thus, if you name your
program welcome, the actual file name is welcome.mb.

Since MapBasic saves your program in a conventional text file, you can use other text editing software
to edit your program if you wish.

Keyboard Shortcuts

The following table lists the keyboard shortcuts you can use within the MapBasic edit window.

Keyboard Action Effect of Action
Home / End Insertion point moves to beginning/end of line
Ctrl-Home/ Ctrl-End Insertion point moves to beginning/end of document
Ctrl-TAB/ Ctrl-Shift- Insertion point moves backward/forward one word
TAB
Ctrl-T Displays the Go To Line dialog box
Ctrl-O Displays the Open dialog box
Ctrl-N Opens a new, empty edit window
MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 57 MB_UG.pdf

User Guide

Chapter 4: Using the Development Environment

Keyboard Action Effect of Action

Ctrl-S Saves the active edit window

Ctrl-P Prints the active edit window

Ctrl-A Selects all text in the edit window

Ctrl-C Copies selected text to the clipboard

Ctrl-X Cuts selected text and copies it to the clipboard

Ctrl-V Pastes text from the clipboard into the edit window

Ctrl-Del Deletes the word after the insertion point

Del Deletes selected text; does not copy to clipboard

Ctrl-F Displays the Find And Replace dialog box

Ctrl-G Repeats the most recent Find command

Ctrl-R Replaces the selected text (using the replacement text from the Find
And Replace dialog box), and performs another Find

Ctrl-J Displays Select Project File dialog

Ctrl-K Compiles the program in the active window

Ctrl-E Next Error command; scrolls the edit window to show the line that
caused a compilation error

Ctrl-L Links the active project

Ctrl-U Sends message to Maplinfo Professional to run the active program

F1 Displays Help.

F8 Displays Text Style dialog, allowing you to change the font

Ctrl-F4 Closes the active edit window

Alt-F4 Exits the MapBasic development environment

Shift-F4 Tile windows

Shift-F5 Cascade windows

Tip: If you select a function name before pressing F1, Help shows a topic describing that function.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 58 MB_UG.pdf

User Guide

Chapter 4: Using the Development Environment

Mouse Shortcuts

Mouse Action Effect of Action

Double-click Double-clicking on text within your program selects a word.

Double-clicking in the list of error messages scrolls the window to
show the line of your program that caused the error.

Triple-click Highlights entire line of text (32-bit version only).

Drag & Drop Dragging text to another window copies the text.

Dragging text within the same window moves the text (unless you
hold down the Ctrl key during the drag, in which case the text is
copied).

Tip: The MapBasic online help contains code samples. You can drag & drop code samples from the
help window to your edit window.

1.
2.
3.

4,

Display help.
Click and drag within the help window to highlight the text you want to copy.

Click on the text you highlighted. Without releasing the mouse button, drag the text out of the
help window.

Move the mouse pointer over your edit window, and release the mouse button. The text is
dropped into your program.

Limitations of the MapBasic Text Editor

Each MapBasic edit window can hold a limited amount of text. If the MapBasic text editor beeps when
you try to insert text, the beeping indicates that the edit window is full.

There are three ways to work around this size limitation:

If you have another text editor, you can use that editor to edit your program. To compile your
program, switch to MapBasic and choose the Compile From File menu command.

You can break your program file (.mb file) into two or more smaller files, and then use the
MapBasic Include statement to incorporate the various files into a single application. For more
information about the Include statement, see the MapBasic Reference.

You can break your program file (.mb file) into two or more smaller files, and then create a
MapBasic project file which links the various program files into a single application. In some
ways, this is similar to using the Include statement to combine program modules. Project files,
however, provide a more efficient solution. Each file included in a project can be compiled
separately; this means that when you edit only one of your modules, you only need to
recompile that module.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 59 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

Compiling Your Program

If you haven’t already done so, display your program in a MapBasic edit window. Then, to compile your
program, choose Compile Current File from the Project menu.

Note: You can have multiple edit windows open at one time. When you choose Compile Current
File, MapBasic compiles the program that is in the front-most window. Thus, if you have
multiple edit windows open, you must make the appropriate window active before you compile.

The MapBasic compiler checks the syntax of your program. If your program contains any syntax errors,

MapBasic displays a dialog indicating that errors were found, and then displays descriptions of the

errors in a list beneath the edit window.

Each error message begins with a line number, indicating which line in the program caused the error.
You must correct your program’s errors before MapBasic can successfully compile your program.

Figure: First.mb

EEFIRST.mb =] E3

Dim =x As 3tring

For = = 1 ta 10
Mote Strdix) —
Next

End Sub

[firzt.mb: 4] Loop contral wariable not numeric.
[first.mb: 3] [End sub] found without coresponding sub statement.

If you double-click on an error message that appears beneath the edit window, MapBasic scrolls the
window to show you the line of the program that caused the error.

After you correct any errors in your program, choose Compile Current File again to try to recompile.
Once your program compiles successfully, MapBasic displays a dialog indicating that compilation was
complete.

When compilation is successful, MapBasic creates an .mbx file (MapBasic eXecutable). This .mbx file
must be present when the user actually runs the finished application. Thus, if you want to provide your
users with a finished MapBasic application, but you do not want to give them all of your source code,
give the users your .mbx file but not your .mb file.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 60 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

A Note on Compilation Errors

There are some types of spelling errors which the MapBasic compiler cannot detect. For example, the
MapBasic compiler will compile the following program, even though the program contains a
typographical error on the second line (STATES is misspelled as TATES):

Open Table ”“states”

Map From tates
The MapBasic compiler cannot identify the typographical error on the second line. This is not a defect
of the compiler, rather, it is simply a result of the fact that some variable and table references are not
evaluated until runtime (until the moment the user runs the program). When the user runs the
preceding program, Maplnfo Professional attempts to carry out the Map From tates statement. At that
time, Maplnfo Professional displays an error message (for example, “Table tates is not open”) unless a
table called tates is actually available.

Running a Compiled Application

To run the compiled application, choose Run MapBasic Program from Maplnfo Professional’s File
menu. Maplnfo Professional’s Run MapBasic Program dialog prompts you to choose which MapBasic
application file (.mbx file) to run.

The MapBasic development environment also provides a shortcut to running your program: After
compiling your program, choose Run from MapBasic’s Project menu (or press Ctrl-U). MapBasic sends
a message to Maplnfo Professional, telling Mapinfo Professional to execute the application.

The MapBasic development environment also provides a shortcut to running your program: after
compiling your program, you can choose Run from MapBasic’s Project menu. MapBasic sends a
message to Maplnfo Professional, telling it to execute the application.

Note: Maplinfo Professional must already be running.

Using Another Editor to Write MapBasic Programs

If you already have a favorite text editor, you can use that editor for editing your MapBasic program.
Just save your MapBasic program as a standard text file.

You can also use word processing software to edit your programs. However, if you use a word
processor to edit your programs, you may need to take special steps to make sure that the word
processor saves your work in a plain text file format. Saving a document as plain text often involves
choosing Save As instead of Save. For more details on saving a document in a plain text format, see
the documentation for your word processing software.

Compiling Programs Written In Another Editor

Earlier, we discussed how MapBasic’s Compile Current File menu item compiles whichever program is
on the screen in the active edit window. MapBasic also provides an alternate method for compiling your
program: the Compile From File command on MapBasic’s File menu.

If you use a text editor other than MapBasic to edit your program, you probably will want to use
Compile From File to compile your program. Compile From File compiles a program without displaying
the program in a MapBasic edit window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 61 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

When you choose Compile From File, MapBasic prompts you to choose a file to compile. If the chosen
file has any compilation errors, MapBasic writes the error messages to a text file with the .err
extension. For example, if you choose Compile From File to compile the program dispatch.mb,
MapBasic writes any error messages to the text file dispatch.err. To view the error file, choose File >
Open.

Compiling and Linking Programs From the Command Line

If you use a text editor other than MapBasic to edit your programs, you may find it awkward switching
to MapBasic whenever you want to compile or link your application. However, there is a way to
automate the process of compiling and linking: if you can configure your text editor so that it issues a
command string, then you can compile programs without leaving your editor.

You can start the MapBasic development environment by executing the command:

mapbasic

If the command line also includes the parameter -D followed by one or more program names,
MapBasic automatically compiles the program files. For example, the following command line launches
MapBasic and compiles two program files (main and sub1):

mapbasic -D main.mb subl.mb

If the command line includes the parameter -L followed by one or more project file names, MapBasic
links the projects. (Linking and Project files are discussed in the next section.) For example, the
following command line links the TextBox application:

mapbasic -L tbproj.mbp
The command line can include both the -D and the -L parameters, as shown below:

mapbasic -D textbox.mb -L tbproj.mbp

If you launch MapBasic with a command line that includes the -D parameter or the -L parameter,
MapBasic shuts down after compiling or linking the appropriate files.

To start MapBasic without displaying a splash screen use the -Nosplash parameter:

mapbasic -Nosplash

Linking Multiple Modules Into a Single Project

What is a MapBasic Project File?

A project file is a text file that allows MapBasic to link separate program files into one application. If you
are developing a large, complex application, your program could eventually contain thousands of lines
of code. You could type the entire program into a single program file. However, most programmers
dislike managing program files that large; once a program file grows to over a thousand lines, it can be
difficult to locate a particular part of the program. Therefore, many programmers break up large
applications into two or more smaller files. The practice of breaking large programs down into smaller,
more manageable pieces is known as modular programming.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 62 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

If you do divide your program into two or more modules, you need to create a project file. The project
file tells the MapBasic linker how to combine separate modules into a single, executable application.

Project files are an optional part of MapBasic programming. You can create, compile, and run
applications without ever using a project file. However, if you plan to develop a large-scale MapBasic
application, it is worth your while to take advantage of MapBasic’s project-file capabilities.

What Are The Benefits of Using Project Files?

* Project files let you modularize your programming. Once you set up a project file, you can
divide your program into numerous, small files. Modular programs are generally easier to
maintain in the long run. Also, having modular programs makes it unlikely that your program
will grow too large to be edited in a MapBasic edit window.

¢ Project files let you modularize your programming. Once you set up a project file, you can
divide your program into numerous, small files. Modular programs are generally easier to
maintain in the long run.

* Project files make it easy to have two or more programmers working on a project at the same
time. Once you have set up a project file, each programmer can work on a separate module,
and the modules can be joined (or, more specifically, “linked”) by the project file.

¢ Project files can reduce the time it takes to recompile your application. If you change one
module in a multiple-module project, you can recompile just that module, then relink the
project. This is often much faster than recompiling all source code in the project-which is what
you must do if you do not use project files.

Examples of Project Files
The TextBox application uses a project file (tbproj.mbp) that looks like this:

[Link]
Application=textbox.mbx
Module=textbox.mbo
Module=auto lib.mbo

Similarly, the ScaleBar application uses a project file (sbproj.mbp) that looks like this:

[Link]
Application=scalebar.mbx
Module=scalebar.mbo
Module=auto lib.mbo
In both examples, the final line of the project file tells MapBasic to build the auto_lib module into the
project. The auto_lib module is one of the sample programs included with the MapBasic software.

If a MapBasic program includes the auto_lib module, the program can provide a special “Auto-Load...”
button in its About dialog box. By choosing the Auto-Load button, the user can set up the application so
that it loads automatically, every time the user runs MaplInfo Professional. If the user does not turn on
the Auto-Load feature, the MapBasic application stops running as soon as the user exits Maplnfo
Professional.

To build the Auto-Load feature into your MapBasic program, see the instructions listed in the file
auto_lib.mb.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 63 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

Creating a Project File

If you have already written a program file, and you want to create a project file for your program, follow
these steps:

1. Choose File > New to open a new edit window.

2. Enter the following line in the edit window:
[Link]

3. Enter aline that contains the text Application=appfilename (where appfilename specifies the
file name of the executable file you want to create). For example:

Application=C:\MB\CODE\CUSTOM.MBX
Application=Local:MapBasic:custom.mbx
Application=/MapBasic/mb_code/custom.mbx

4. Enter a line that contains the text Module=modulename (where modulename specifies the
name of a MapBasic object file). For example:

Module=C: \MB\CODE\CUSTOM.MBO
Module=Local :MapBasic:custom.mbo
Module=/MapBasic/mb_code/custom.mbo

Note the extension on the filename; MapBasic object files have the file extension .mbo.
MapBasic creates an object file when you compile a single module that is part of a multiple-
module project.

Whenever you choose Project > Compile Current File, MapBasic tries to compile the current
file into an executable application file (ending with .mbx). However, if the program file contains
calls to functions or procedures that are not in the file, MapBasic cannot create an .mbx file. In
this case, MapBasic assumes that the program is part of a larger project. MapBasic then builds
an object file (.mbo) instead of an executable file (.mbx). MapBasic also creates an object file
whenever the module that you are compiling does not have a Main procedure.

5. Repeat step 4 for every file you wish to include in your application.

6. Choose File > Save As to save the project file.
In the Save As dialog, choose the file type “Project File” (from the list of file types in the lower
left corner of the dialog), so that the file has the extension .mbp (MapBasic Project).
In the Save As dialog, choose the file type “Project File” (from the list of file types in the lower
left corner of the dialog), so that the file has the extension .mbp (MapBasic Project).

7. Close the edit window (either choose File > Close or click on the window’s close box).

If you add more modules to the project at a later date, remember to add appropriate “Module=" lines to
the project file.

Compiling and Linking a Project
Once you have created a project file, you can compile and link your project by following these steps:

1. Compile each module that is used in the project. To compile a module, choose File > Open,
then choose Project > Compile Current File. To compile a module without first displaying it,
choose File > Compile From File.

2. Choose Project > Select Project File to tell MapBasic which project file you want to link. The
Select Project File dialog displays. Choose the project (.mbp) file you want, and choose OK.
The selected project file appears in an edit window. This file remains selected until you exit

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 64 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

MapBasic, close the project file’s edit window, or choose the Project > Select Project File
command again. Only one project file can be selected at any time.

Note: You cannot change which project file is selected by making an edit window the front-most
window. You cannot change which project file is selected by choosing File > Open. To select
the project file you want to link, choose Project > Select Project File.

3. Choose Project > Link Current Project to link your application. MapBasic reads the object
(.mbo) files listed in the project file. If there are no link errors, MapBasic builds an executable
(.mbx) file. If there are link errors, MapBasic displays an error message.
You also can link a project in a single step, without first displaying the project file in an edit window, by
choosing File > Link From File.

The object files created by the MapBasic compiler cannot be linked using any other linker, such as a C-
language linker. Only the MapBasic linker can link MapBasic object modules.

Opening Multiple Files

If you use project files, you may find that you sometimes need to open all of the program files in your
project. To simplify this process, the Open dialog lets you open multiple files at the same time. To open
multiple files at one time:

1. On the File menu, choose Open.
2. Click on a file name in the Open Program dialog box.

3. Hold down the Shift key or the Ctrl key as you click on another file name. Holding down the
Shift key lets you select a list of adjacent files. Holding down the Ctrl key lets you add files to
the selected set, one file at a time.

Calling Functions or Procedures From Other Modules

If a .MB file is part of a multiple-module project, it can call functions and sub procedures located in
other modules. For example, textbox.mb calls the Handlelnstallation procedure, which is located in the
auto_lib library. Calling a function or sub procedure located in another module is known as an external
reference.

If your MapBasic program calls an external procedure, your program file must contain a Declare Sub
statement. Similarly, if your program calls an external function, your program file must contain a
Declare Function statement. These Declare statements tell the MapBasic compiler what parameters
are used by the procedure or function.

The sample program textbox.mb contains the statement Include “auto_lib.def”. The auto_lib.def
definitions file contains a set of Declare Sub and Declare Function statements which correspond to
the auto_lib module. If textbox.mb did not include the auto_lib.def definitions file, the MapBasic
compiler would consider the call to the Handlelnstallation procedure to be a syntax error (“Invalid sub
procedure name”).

Sharing Variables With Other Modules

To declare a global variable that can be used by two or more modules in a project:

1. Place Global statements in a definitions file (for example, “globals.def”).

2. Use the Include statement to incorporate the definitions file into each module that needs to
use the global variables.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 65 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

For example, the auto_lib.def definitions file declares two global string variables, gsAppFilename and
gsAppDescription. The auto_lib.mb program file and the textbox.mb program file both issue the
statement:

Include "auto lib.def”

Therefore, the two modules can share the global variables. When the textbox.mb program stores
values in the global variables, the auto_lib.mb library is able to read the new values.

Global variables also allow you to share information with other applications that are running.

Declaring Variables That Cannot Be Shared With Other Modules

A program file can contain Dim statements that are located outside of any function or sub procedure
definition. Such Dim statements are known as module-level Dim statements. If a variable is declared
by a module-level Dim statement, all functions and procedures in that module (i.e., in that .mb file) can
use that variable. However, a MapBasic file cannot reference another file’s module-level Dims.

Use module-level Dim statements if you want to declare a variable that can be shared by all
procedures in a file, but you want to be sure that you don’t accidentally use a variable name that is
already in use in another module.

Menu Summary in MapBasic Development Environment

The File Menu

The File menu provides commands that let you create, open, close, save, exit, and print MapBasic
programs.

* New opens a new edit window where you can type in your program.

* Open displays an existing file in an edit window. The file can be a MapBasic program file (for
example, dispatch.mb), a list of error messages (dispatch.err), or a Maplnfo Professional
workspace file. Each workspace is actually just a text file containing an assortment of
MapBasic statements.

The Open dialog lets you open two or more files at the same time. To select multiple files, hold down

the Shift key or the Ctrl key as you click on the file names.

Note: Some text files are too big to be displayed in a MapBasic edit window. For information on
bypassing this limitation, see Limitations of the MapBasic Text Editor (above).

* Close closes the active edit window. If you have made changes in the current window,
MapBasic prompts you to either save or discard the changes before closing the window. Close
is available when at least one edit window is open.

¢ Close All closes all open edit windows. As with the Close command, MapBasic prompts you to
either save or discard any unsaved changes. Close All is available when at least one edit
window is open.

* Save saves the contents of the active edit window to disk. Save is available when you have
changed the contents of an edit window.

¢ Save As saves the contents of the active edit window under a new file name.
Save As is available when you have an open edit window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 66 MB_UG.pdf

User Guide

Chapter 4: Using the Development Environment

Revert discards any changes made to the edit window since it was last saved.

Revert is available when you have changed the contents of an edit window.

Compile From File compiles an existing .mb file directly from the contents of the disk file,
without first displaying the contents of the file in an edit window. (As opposed to the Compile
Current File command on the Project menu, which compiles whatever program is in the active
edit window.) Use Compile From File to compile a program written in another text editor.

If there are compilation errors, Compile From File writes error messages to a text file named
filename.err. To view the errors file, choose File > Open.

Link From File links an existing project without first displaying the contents of the project file in
an edit window. (As opposed to the Link Current Project command on the Project menu, which
links the current project.)

Page Setup defines printer options (for example, print margins).

Page Setup defines printer options (for example, paper size and orientation).

Printer Setup defines printer options (for example, which print command to use).

Print prints the active edit window.

Print is available when there is at least one Edit window open.

Exit exits the MapBasic environment. MapBasic prompts you to either save or discard any
changes that have not been saved.

Quit exits the MapBasic environment. MapBasic prompts you to either save or discard any
changes that have not been saved.

The Edit Menu

The Edit menu provides commands that you can use when drafting and editing your MapBasic
program.

Undo cancels the most recent change you made in the active edit window. When you select
Undo, MapBasic discards the last change you performed, and then the menu item changes to
read Redo. If you select Redo, MapBasic then re-applies the discarded change.

Undo is enabled when there is at least one open edit window, and you have made changes to
the text in that window.

Cut copies the selected (highlighted) text to the Clipboard, then removes the selected text
from the edit window. The text remains on the Clipboard and you can later insert it elsewhere
through the Paste command (see below).

Cut is available when text is selected in the active edit window.

Copy copies the selected text to the Clipboard, but does not delete it.

Copy is available when text is selected in the active edit window.

Paste copies the contents of the Clipboard to the active edit window at the current cursor
location. If you select text in the edit window, and then perform Paste, the text from the
clipboard replaces the selected text.

Paste is available when text is in the Clipboard and there is at least one open edit window.
Clear deletes selected text without copying it to the Clipboard.
Clear is available when there is selected text in an open edit window.

Select All selects the entire contents of the active edit window. Select All is available when
there is at least one open edit window.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 67 MB_UG.pdf

User Guide Chapter 4: Using the Development Environment

The Search Menu

The Search menu helps you to locate and replace text in the edit window. Some of these commands
simplify the process of locating statements that have syntax errors.

* Find searches the active edit window for a particular text string. Find is available when there is
at least one open edit window.

To find the next occurrence of a text string: Type the text string you want to find into the Find box. If you
want the search to be case-sensitive, check the Match Case check box.

When you click on the Find button, MapBasic searches forward from the current insertion point. If
MapBasic finds an occurrence of the Find string, the window scrolls to show that occurrence. If the text
is not found, MapBasic beeps.

To replace all occurrences of a text string:

* Type the replacement string in the Replace With box, and click the Replace All button.
MapBasic replaces all occurrences of the Find string with the Replace With string.
Note: This replacement happens instantly, with no confirmation prompt.
To confirm each string replacement:
1. Choose Search > Find. The Find dialog appears.

2. Fillin the Find and Replace With text boxes.
3. Within the Find dialog, click the Find button.

MapBasic finds and highlights the next occurrence of the text string.

If you want to replace the currently-highlighted string, press Ctrl-R (the hot-key for the Replace And
Find Again menu command).

If you do not want to replace the currently-highlighted occurrence of the Find string, press Ctrl-G (the
hot-key for the Find Again menu command).

If you want to replace the currently-highlighted string, press Command-R (which is the hot-key for the
Replace and Find Again command).

If you do not want to replace the currently-highlighted occurrence of the Find string, press Command-
G, the hot-key for the Find Again menu item.

If you want to replace the currently-highlighted string, press Ctrl-R (which is the hot-key for the Replace
and Find Again command).

If you do not want to replace the currently-highlighted occurrence of the Find string, press Ctrl-G, the
hot-key for the Find Again menu item.

¢ Find Again finds the next occurrence of the string specified in the previous Find dialog.
Find Again is available when there is at least one open edit window, and a Find operation has
been performed.

¢ Replace And Find Again replaces the selected text with text specified in the Find dialog, then
finds and highlights the next occurrence of the search string

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 68 MB_UG.pdf

User Guide

Chapter 4: Using the Development Environment

Next Error is a feature of the compiler that helps you correct syntax errors. When a program
does not compile correctly, MapBasic displays a list of the errors at the bottom of the edit
window. Next Error scrolls forward through the edit window, to the line in your program which
corresponds to the next error in the error list.

Next Error is available when there are error messages in the active edit window.

Previous Error is similar to Next Error. Previous Error scrolls backward through the edit
window to the previous item in the error list. Previous Error is available when there are error
messages relating to the active edit window.

Go To Line prompts you to type in a line number, then scrolls through the edit window to that
line in your program.

A program may compile successfully, yet it may encounter an error at runtime. When this
happens, a dialog appears, indicating that an error occurred at a certain line in your program.
Typically, you then want to return to the MapBasic development environment and go to the
appropriate line of your program. Go To Line is available when there is at least one edit window
open.

The Project Menu

The Project menu lets you compile and run MapBasic programs, display program statistics, and show
or hide the error window.

Select Project File presents a dialog which lets you open an existing project file. A project file
is a text file that lists all the modules that comprise your application. Once you select a project
file, that project file becomes the active project file, and you can compile the file by choosing
Link Current Project.

Compile Current File compiles the program in the active edit window. Compile is available if there is

at least one open edit window.

If the compiler detects syntax errors in the program, MapBasic displays a list of errors at the bottom of
the edit window. If there are no syntax errors, MapBasic builds an mbx file (if the module is a stand-

alone program) or an object module (mbo) file.

Link Current Project links the modules listed in the current project file, and produces an
executable application file (unless there are errors, in which case an error message displays).
Link Current Project is available whenever a project file is open.

Run sends a message to the Maplinfo Professional software, telling it to execute the
application in the front-most edit window.

Get Info displays statistics about the program in the active edit window. Get Info is available if
there is at least one open edit window.

Show/Hide Error List activates or deactivates the error list associated with the active edit
window. If the error list is currently displayed, the menu item reads Hide Error List. If the error
list is currently hidden, the menu item reads Show Error List. Show/Hide Error List is available
when there is an open edit window with associated error messages.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 69 MB_UG.pdf

User Guide

Chapter 4: Using the Development Environment

The Window Menu

If you have more than one edit window open, MapBasic’s Window menu lets you arrange your
windows or switch which window is active.

Commands on this menu are available when there is at least one edit window open.

Tile Windows arranges the edit windows in a side-by-side pattern.
Cascade Windows arranges the edit windows in an overlapping pattern.

Arrange Icons organizes the icons that correspond to your minimized edit windows. You can
click an edit window’s minimize button to temporarily shrink that window down to an icon.

Text Style lets you choose the font in which the window is displayed. The font you choose is
applied to the entire window.

The bottom of the Window menu lists a menu item for each open edit window. To make one of
the edit windows active (i.e., to bring that window to the front), select the appropriate item from
the Window menu.

The Help Menu

Use the Help menu to access online help. The online help file contains descriptions of all statements
and functions in the MapBasic language. Help also includes a comprehensive set of cross-reference
screens to help you find the name of the statement you need.

Note:

Contents opens the help window at the Contents screen. From there, you can navigate
through help by clicking on hypertext jumps, or you can click on the Search button to display
the Search dialog.

Search For Help On jumps directly to the Search dialog.

How To Use Help displays a help screen that explains how to use online help.

About MapBasic displays the About dialog, which shows you copyright and version number
information.

Many of the help screens contain brief sample programs. You can copy those program
fragments onto the clipboard, then paste them into your program. To copy text from a help
screen, choose Edit > Copy from the help window’s Edit menu or by dragging text directly out
of the help window, and drop it into your program.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 70 MB_UG.pdf

MapBasic Fundamentals

Every MapBasic programmer should read this chapter, which describes
many fundamental aspects of the MapBasic programming syntax.

Sections in this Chapter:

¢+ General Notes on MapBasic Syntax................... 72
¢ EXPressionsiiiiiinninnnnaaaa 78
¢ Looping, Branching, and Other Flow-Control 87
¢ Proceduresiiiiii i 92
¢+ Procedures That Act As System Event Handlers 95
¢ Tips for Handler Procedures 98
¢ Compilerinstructions 100
¢ Program Organization 102

£ Maplnfo.

User Guide Chapter 5: MapBasic Fundamentals

General Notes on MapBasic Syntax

Before getting into discussions of specific MapBasic statements, it is appropriate to make some
observations about MapBasic program syntax in general.

Comments

In MapBasic, as in some other BASIC languages, the apostrophe character (’) signifies the beginning
of a comment. When an apostrophe appears in a program, MapBasic treats the remainder of the line
as a comment, unless the apostrophe appears within a quoted string constant.

Case-Sensitivity

The MapBasic compiler is case-insensitive. You can enter programs with UPPER-CASE, lower-case,
or Mixed-Case capitalization.

For clarity, this manual capitalizes the first letter of each MapBasic language keyword. Program
variables appear in lower-case. For example, in the following program sample, the words If and Then
have proper capitalization because they are keywords in MapBasic, whereas the word counter
appears in lower-case, because it is the name of a variable.

If counter > 5 Then

Note ”Count is too high”
End If

Continuing a Statement Across Multiple Lines

When you write a MapBasic program, you can continue longer statements across more than one line.
For example, the following code sample continues the If...Then statement across several lines:
If counter = 55
Or counter = 34 Then

Note ”Counter is invalid”
End If

Codes Defined In mapbasic.def

Many MapBasic statements and function calls will not work properly unless the following statement
appears at or near the top of your program:

Include "mapbasic.def”

The file mapbasic.def is a text file containing definitions for many standard MapBasic codes. As a rule,
the codes defined in mapbasic.def are all in upper-case (for example, TRUE, FALSE, BLACK, WHITE,
CMD_INFO_X, OBJ_INFO_TYPE, etc.). As you read the program examples that appear in the
MapBasic documentation, you will see many such codes. For example:

If CommandInfo(CMD_ INFO DLG OK) Then

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 72 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

If your program references standard codes (such as CMD_INFO_DLG_OK in the example above),
your program must issue an Include statement to include mapbasic.def. If you omit the Include
statement, your program will generate a runtime error (for example, “Variable or Field
CMD_INFO_DLG_OK not defined”).

Typing Statements Into the MapBasic Window

The Maplinfo Professional software has a feature known as the MapBasic Window. Typing statements
directly into the MapBasic Window helps you to learn MapBasic statement syntax. However, some
restrictions apply to the MapBasic window:

¢ Some MapBasic statements may not be entered through the MapBasic window, although you
may use those statements within compiled MapBasic programs. The general rule is: flow-
control statements (such as If...Then, For...Next, and GoTo) do not work in the MapBasic
window.

* To determine whether you can type a particular statement into the MapBasic window, see the
MapBasic Reference or online Help. If a statement does not work in the MapBasic window,
that statement’s entry in the Reference indicates the restriction.

¢ When you type statements directly into MapInfo Professional’'s MapBasic Window, you must
take special steps if you want to continue the statement across multiple lines. At the end of the
each partial line, type Ctrl-Enter instead of Enter. After you have typed the entire statement,
highlight the lines that make up the statement, and press Enter.

* Codes that are defined in mapbasic.def (for example, BLACK, WHITE, etc.) may not be
entered in the MapBasic window. However, each code has a specific value, which you can
determine by reading mapbasic.def; for example, the code BLACK has a numerical value of
zero. When you are entering commands into the MapBasic window, you must use the actual
value of each code, instead of using the name of the code (for example, use zero instead of
“BLACK”).

* Each statement that you type into the MapBasic window is limited to 256 characters.

Variables

MapBasic’s syntax for declaring and assigning values to variables is much like the syntax of other
modern BASIC languages. However, MapBasic supports some types of variables that are not available
in other languages (such as the Object variable; for a complete list of MapBasic variable types, see the
description of the Dim statement in the MapBasic Reference).

What Is a Variable?

Think of a variable as a very small piece of your computer’s memory. As you write programs, you will
find that you need to temporarily store various types of information in memory. To do this, you declare
one or more variables. Each variable has a unique name (for example, counter, x, y2,
customer_name). For each variable that you declare, MapBasic sets aside a small piece of memory.
Thereafter, each variable can contain one small piece of information.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 73 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Declaring Variables and Assigning Values to Variables

The Dim statement defines variables. You must declare every variable that you use, and the variable
declaration must appear before the variable is used.

Use the equal operator (=) to assign a value to a variable.
The following example declares an Integer variable and assigns a value of 23 to that variable:

Dim counter As Integer
counter = 23

A single Dim statement can declare multiple variables, provided that the variable names are separated
by commas. The following Dim statement declares three floating-point numeric variables:
Dim total distance, longitude, latitude As Float

longitude = -73.55
latitude = 42.917

A single Dim statement can declare variables of different types. The following statement declares two
Date variables and two String variables:

Dim start_date, end date As Date,
first name, last name As String

Variable Names

Variable names must conform to the following rules:

e Each variable name can be up to thirty-one characters long.

e Variable names may not contain spaces.

* Each variable name must begin with a letter, an underscore (_) or a tilde (~).

e Each variable name can consist of letters, numbers, pound signs (#), or underscore characters

Q)

« A variable name may end in one of the following characters: $, %, &, !, or @. In some BASIC
languages, these characters dictate variable types. In MapBasic, however, these characters
have no special significance.

* You may not use a MapBasic keyword as a variable name. Thus, you may not declare
variables with names such as If, Then, Select, Open, Close, or Count. For a list of reserved
keywords, see the discussion of the Dim statement in the MapBasic Reference.

Data Types

MapBasic supports the following types of variables:

Type Description
Smallint Integer value between -32767 and 32767; stored in two bytes
Integer Integer value between -2 billion and 2 billion; stored in four bytes
Float Floating-point value; stored in eight-byte IEEE format
String Variable-length character string, up to 32,767 characters long
String * n | Fixed-length character string, n characters long (up to 32,767 characters)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 74 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Type Description
Logical True or False
Date Date
Object Graphical object, such as a line or a circle; see Chapter 10: Graphical Objects for
details
Alias Column reference of a table; see Chapter 8: Working With Tables for details
Pen Pen (line) style setting; see Chapter 10: Graphical Objects
Brush Brush (fill) style setting; see Chapter 10: Graphical Objects

Fixed-length and variable-length String variables

MapBasic supports both fixed-length and variable-length String variables. A variable-length String
variable can store any string value, up to 32,767 characters long. A fixed-length String variable,
however, has a specific length limit, which you specify in the Dim statement.

To declare a variable-length String variable, use String as the variable type. To declare a fixed-length
String variable, follow the String keyword with an asterisk (*), followed by the length of the string in
bytes. In the following example, full_name is declared as a variable-length String variable, while
employee_id is declared as a fixed-length String variable, nine characters long:

Dim full name As String,
employee id As String * 9

Note: Like other BASIC languages, MapBasic automatically pads every fixed-length String variable
with blanks, so that the variable always fills the allotted space. Thus, if you declare a fixed-
length String variable with a size of five characters, and then you assign the string “ABC” to the
variable, the variable will actually contain the string “ABC” (“ABC” followed by two spaces).
This feature is helpful if you need to write an application that produces formatted output.

Array Variables

To declare an array variable, follow the variable name with the size of the array enclosed in
parentheses. The array size must be a positive integer constant expression. The following Dim
statement declares an array of ten Date variables:

Dim start date(10) As Date
To refer to an individual element of an array, use the syntax:
array name (element-number)
Thus, the following statement assigns a value to the first element of the start_date array:
start_date(1) = "6/11/93"

To resize an array, use the ReDim statement. Thus, in cases where you do not know in advance how
much data your program will need to manage-perhaps because you do not know how much data the
user will enter-your program can use the ReDim statement to enlarge the array as needed. Use the
UBound() function to determine the current size of an array.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 75 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

The following example declares an array of String variables called name_list. The latter part of the
program increases the size of the array by ten elements.

Dim counter As Integer, name list (5) As String

counter = UBound (names) ' Determine current array size
ReDim names (counter + 10) ' Increase array size by 10

MapBasic arrays are subject to the following rules:

e MapBasic supports only one-dimensional arrays.

¢ In MapBasic, the first element in an array always has an index of one. In other words, in the
example above, the first element of the names array is names(1).

If you need to store more data than will fit in an array, you may want to store your data in a table. For
more information on using tables, see Chapter 8: Working With Tables.

MapBasic initializes the contents of numeric arrays and variables to zero when they are defined. The
contents of string arrays and variables are initially set to the null string.

Custom Data Types (Data Structures)

Use the Type...End Type statement to define a custom data type. A custom data type is a grouping of
one or more variables types. Once you define a custom data type, you can declare variables of that
type by using the Dim statement.

The following program defines a custom data type, employee, then declares variables of the employee
type.

Type employee
name As String
title As String
id As Integer
End Type
Dim manager, staff(10) As employee
Each component of a custom data type is referred to as an element. Thus, the employee data type in
the preceding example has three elements: name, title, and id. To refer to an individual element of an
array, use the generic syntax:

variable_ name.element_name
The following statement assigns values to each element of the manager variable:

manager.name = “Joe”

manager.title = ”"Director of Publications”

manager.id = 111223333
You can declare an array of variables of a custom type. The following statement assigns values to
some of the elements of the first item in the employee array:

staff (1) .name = "Ed4”

staff (1) .title = ”"Programmer”
Type...End Type statements must appear outside of any sub procedure definition. Sub procedures are
discussed later in this chapter. Typically, Type...End Type statements appear at or near the very top of
your program. A Type definition may include elements of any other type, including previously-defined
custom data types. You can also declare global variables and arrays of custom data types.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 76 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals
Global Variables

Variables declared with the Dim statement are local variables. A local variable may only be used within
the procedure where it is defined. MapBasic also lets you declare global variables, which may be
referenced within any procedure, anywhere in the program.

To declare a global variable, use the Global statement. The syntax for the Global statement is identical
to the syntax for the Dim statement, except that the keyword Global appears instead of the keyword
Dim. Thus, the following Global statement declares a pair of global Integer variables:

Global first_row, last_row As Integer

Global statements must appear outside of any sub procedure definition. Sub procedures are
discussed later in this chapter. Typically, Global statements appear at or near the top of the program.

The following program declares several global variables, then references those global variables within
a sub procedure.

Declare Sub Main
Declare Sub initialize globals

Global gx, gy As Float ' Declare global Float variables
Global start_date As Date ' Declare global Date variable
Sub Main

Dim x, y, z As Float ' Declare Main proc’s local vars

Call initialize globals

End Sub

Sub initialize_globals

gx = -1 ’ Assign global wvar: GX

gy = -1 ' Assign global wvar: GY

start date = CurDate() ' Assign global var: START DATE
End Sub

Whenever possible, you should try to use local variables instead of global variables, because each
global variable occupies memory for the entire time that your program is running. A local variable,
however, only occupies memory while MapBasic is executing the sub procedure where the local
variable is defined.

MapBasic global variables can be used to exchange data with other software packages. When an
application runs on Windows, other applications can use Dynamic Data Exchange to read and modify
the values of MapBasic global variables.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 77 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Scope of Variables

A sub procedure may declare a local variable which has the same name as a global variable. Thus,
even if a program has a global variable called counter, a sub procedure in that program may also have
a local variable called counter:

Declare Sub Main
Declare Sub setup
Global counter As Integer

Sub setup

Dim counter As Integer
counter = 0
End Sub

If a local variable has the same name as a global variable, then the sub procedure will not be able to
read or modify the global variable. Within the sub procedure, any references to the variable will affect
only the local variable. Thus, in the example above, the statement: counter = 0 has no effect on the
global counter variable.

Upon encountering a reference to a variable name, MapBasic attempts to interpret the reference as the
name of a local variable. If there is no local variable by that name, MapBasic attempts to interpret the

reference as the name of a global variable. If there is no global variable by that name, MapBasic tries

to interpret the reference as a reference to an open table. Finally, if, at runtime, the reference cannot be
interpreted as a table reference, MapBasic generates an error message.

Expressions

In this section, we take a closer look at expressions. An expression is a grouping of one or more
variables, constant values, function calls, table references, and operators.

What is a Constant?
An expression can be very simple. For example, the following statement:

counter = 23

assigns a simple integer expression hamely, the value 23 to the variable, counter. We refer to the
expression 23 as a numeric constant. You might think of a constant as a specific value you can assign
to a variable.

The following program declares a String variable, then assigns a string constant (the name “Brian
Nichols”) to the variable:

Dim name As String

name = “Brian Nichols”
The syntax for numeric expressions is different than the syntax for string expressions: string constants
must be enclosed in double-quotation marks (for example, “Brian Nichols”) whereas numeric constants
(for example, 23) are not. You cannot assign a String expression, such as “Brian Nichols,” to a numeric
variable. For more information on constant expressions, see A Closer Look at Constants.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 78 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

What is an Operator?

An operator is a special character (for example, +, *, >) or a word (for example, And, Or, Not) which
acts upon one or more constants, variables, or other values. An expression can consist of two or more
values that are combined through an operator. In the following example, the plus operator (+) is used
within the expression y + z, to perform addition. The result of the addition (the sum) is then assigned to
the variable, x:

Dim x, y, z As Float

y =1.5

z = 2.7

X =Y + z
In this example, the plus sign (+) acts as an operator - specifically, a numeric operator. Other numeric
operators include the minus operator (-), which performs subtraction; the asterisk (*), which performs
multiplication; and the caret (), which performs exponentiation. A complete list of numeric operators
appears later in this chapter.

The plus operator can also be used within a String expression to concatenate separate strings into one
string. The following program builds a three-part string expression and stores the string in the variable,
full_name:

Dim first name, last name, middle init, full name As String

first name = ”Brian ”

middle_init = ”"R. ”

last_name = “Nichols”

full name = first name + middle_init + last name

' At this point, the variable full name contains:
! Brian R. Nichols

What is a Function Call?

The MapBasic language supports many different function calls. Each function has a different purpose.
For example, the Sqr() function calculates square root values, while the UCase$() function converts a
text string to uppercase. When you enter a function name into your program, your program calls the
named function, and the function returns a value.

A function call can comprise all or part of an expression. For example, the following statement assigns
a value to the variable, x, based on the value returned by the Minimum() function:

X = Minimum(y, z)

The MapBasic function call syntax is similar to that of other modern BASIC languages. The function
name (for example, “Minimum?”, in the example above) is followed by a pair of parentheses. If the
function takes any parameters, the parameters appear inside the parentheses. If the function takes
more than one parameter, the parameters are separated by commas (the Minimum() function takes
two parameters).

A function call is different than a generic statement, in that the function call returns a value. A function
call cannot act as a stand-alone statement; instead, the value returned by the function must be
incorporated into some larger statement. Thus, the following program consists of two statements: a

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 79 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Dim statement declares a variable, x; and then an assignment statement assigns a value to the
variable. The assignment statement incorporates a function call (calling the Sqr() function to
calculate the square root of a number):

Dim x As Float

X = Sgr(2)
Similarly, the following program uses the CurDate() function, which returns a Date value representing
the current date:

Dim today, yesterday As Date

today = CurDate()

yesterday = today - 1
The CurDate() function takes no parameters. When you call a function in MapBasic, you must follow
the function name with a pair of parentheses, as in the example above, even if the function takes no
parameters.

MapBasic supports many standard BASIC functions, such as Chr$() and Sqr(), as well as a variety of
special geographic functions such as Area() and Perimeter().

A Closer Look At Constants

A constant is a specific value that does not change during program execution. Programmers
sometimes refer to constants as “hard-coded” expressions, or as “literals.”

Numeric Constants: Different types of numeric variables require different types of constants. For
instance, the constant value 36 is a generic numeric constant. You can assign the value 36 to any
numeric variable, regardless of whether the variable is Integer, Smallint, or Float. The value 86.4 is a
floating-point numeric constant.

Hexadecimal Numeric Constants: MapBasic 4.0 and later supports hexadecimal numeric constants
using the Visual Basic syntax: &Hnumber (where number is a hexadecimal number). The following
example assigns the hexadecimal value 1A (which equals decimal 26) to a variable:

Dim i num As Integer
i num = &HIA

Numeric constants may not include commas (thousand separators). Thus, the following statement will
not compile correctly:

counter = 1,250,000 ' This won’t work!
If a numeric constant includes a decimal point (decimal separator), the separator character must be a
period, even if the user’s computer is set up to use some other character as the decimal separator.
String Constants: A String constant is enclosed in double quotation marks. For example:

last_name = ”“Nichols”

Each string constant can be up to 256 characters long.

The double quotation marks are not actually part of the string constant, they merely indicate the
starting and ending points of the string constant. If you need to incorporate a double-quotation mark
character within a string constant, insert two consecutive double-quotation marks into the string. The
following program illustrates how to embed quotation marks within a string:

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 80 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Note ”The table ”"”"World”” is already open.”

Logical Constants: Logical constants can be either one (1) for TRUE or zero (0) for FALSE. Many
MapBasic programs refer to the values TRUE and FALSE; note that TRUE and FALSE are actually
defined within the standard MapBasic definitions file, mapbasic.def. To refer to standard definitions like
TRUE and FALSE, a program must issue an Include statement, to include mapbasic.def. For example:

Include "mapbasic.def”

Dim edits pending As Logical

edits pending = FALSE
Date Constants: To specify a date constant, enter an eight-digit Integer with the format YYYYMMDD.
This example specifies the date December 31, 1995:

Dim d_enddate As Date
d_enddate = 19951231

Alternately, you can specify a string expression that acts as a date constant:

d_enddate = ”12/31/1995"

When you specify a string as a date constant, the year component can be four digits or two digits:

d_enddate = ”12/31/95"

You can omit the year, in which case the current year is used:

d_enddate = "12/31"

Caution: Using a string as a date constant is sometimes unreliable, because the results you get
depend on how the user’s computer is configured. If the user’s computer is configured to use Month/
Day/Year formatting, then “06/11/95” represents June 11, but if the computer is set up to use Day/
Month/Year formatting, then “06/11/95” represents the 6th of November.

If the user’s computer is set up to use “-” as the separator, MaplInfo Professional cannot convert string
expressions such as “12/31” into dates.

To guarantee predictable results, use the NumberToDate() function, which accepts the eight-digit
numeric date syntax. (Numeric date constants, such as 19951231, are not affected by how the user’s
computer is configured.) If you need to use strings as date values - perhaps because you are reading
date values from a text file - use the Set Format statement to control how the strings are interpreted.
For Set Format statement details, see the MapBasic Reference or online Help.

To configure date formatting options under Microsoft Windows, use the Regional Settings control
panel. Alias Constants: Alias variables are discussed in detail in Chapter 8: Working With Tables.
You can assign a string expression to a variable of type Alias. For example:

Dim column name As Alias
column name = ”"City”

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 81 MB_UG.pdf

User Guide

Chapter 5: MapBasic Fundamentals

The following table contains examples of various types of constants.

Types Sample assignments Notes
Integer i = 1234567
Smallint m =90
Float f=4
size = 3.31
debt = 3.4e9
String s_mesg = “Brian Nichols” Enclose string in double
quotes. To embed quotes in
a string, type two quotation
marks. To include special
characters use the Chr$()
function.
Logical edits_pending = 1 1=true, 0 = false
edits_pending = TRUE The MapBasic definition file
defines TRUE and FALSE.
Date d_starting = 19940105
date_done = “3/23/88”
paiddate = “12-24-1993”
yesterday = CurDate() - 1
Alias col_name = “Pop_1990” Aliases can be assigned like
col_name = “COL1" strings. See Chapter 8:
Working With Tables for
more information about
Alias variables.
Pen hwypen = MakePen(1, 3, There is no constant syntax
BLACK) for Pen expressions.
Brush zbrush = MakeBrush(5, There is no Brush constant
BLUE, WHITE) syntax.
Font Ibl_font = There is no Font constant
MakeFont(“Helv”, 1, 20, syntax.
BLACK, WHITE)
Symbol loc_sym = MakeSymbol(44, | Thereis no Symbol constant
RED, 16) syntax.
Object path = CreateLine(73.2, 40, | There is no Object constant

73.6,40.4)

syntax.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 82

MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Variable Type Conversion

MapBasic provides functions for converting data of one type to another type. For instance, given a
number, you can produce a string representing the number calling the function Str$():

Dim gl, g2, g3, g4, total As Float, s message As String

total = gl + g2 + g3 + g4
s _message = ”“Grand total: ” + Strs$(total)

A Closer Look At Operators

Operators act on one or more values to produce a result. Operators can be classified by the data types
they use and the types of results they produce.

Numeric Operators: Each of the operators in the following table is a numeric operator. Two numeric
values can be combined using a numeric operator to produce a numeric result.

Operator Performs Example
+ addition x=a+b
- subtraction x=a-b
* multiplication x=a*b
/ division x=alb
\ integer division x=a\b
Mod integer remainder | x =a Mod b
A exponentiation x=a’b

The \ and Mod operators perform integer division. For example:

10/8 returns 1.25
10\8 returns 1 (the integer portion of 1.25)
10 Mod 8 returns 2 (the remainder after dividing 10 by 8)

The minus sign (-) operator can be used to negate a numeric value

X = -23
String Operators: The plus operator (+) lets you concatenate two or more string expressions into one
long string expression.

Note "Employee name: ” + first_name + ” ” + last_name

You can use the ampersand operator (&) instead of the plus operator when concatenating strings. The
& operator forces both operands to be strings, and then concatenates the strings. This is different than
the + operator, which can work with numbers or dates without forcing conversion to strings.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 83 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Note: The & character is also used to specify hexadecimal numbers (&Hnumber). When you use &
for string concatenation, make sure you put a space before and after the & so that the
MapBasic compiler does not mistake the & for a hex number prefix.

The Like operator performs string comparisons involving wild-card matching. The following example
tests whether the contents of a String variable begins with the string “North”;

If s_state_name Like ”North%” Then

The Like operator is similar to the Like() function. For a description of the Like() function, see the
MapBasic Reference or online Help.

Date Operators: The plus and minus operators may both be used in date expressions, as summarized

below.
Expression Returns
date + integer a Date value, representing a later date
date - integer a Date value, representing an earlier date
date - date an Integer value, representing the number of elapsed days

The following example uses the CurDate() function to determine the current date, and then calculates
other date expressions representing tomorrow’s date and the date one week ago:

Dim today, one week ago, tomorrow As Date,
days_elapsed As Integer

today = CurDate()

tomorrow = today + 1

one week ago = today - 7

' calculate days elapsed since January 1:

days_elapsed = today - StringToDate(”1/1")

Comparison Operators: A comparison operator compares two items of the same general type to

produce a logical value of TRUE or FALSE. Comparison operators are often used in conditional
expressions (for example, in an If...Then statement).

Operator Returns TRUE if Example
= equal to Ifa=bThen...
<> not equal to Ifa<>bThen ...
< less than Ifa<bThen ..
> greater than Ifa>bThen ...
<= less than or equal to Ifa<=bThen ...
>= greater than or equal to Ifa>=bThen ..
Between...And...value is within | If x Between f_low And f_high
range Then...

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 84 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Each of these comparison operators may be used to compare string expressions, humeric
expressions, or date expressions. Note, however, that comparison operators may not be used to
compare Object, Pen, Brush, Symbol, or Font expressions.

The Between...And... comparison operator lets you test whether a data value is within a range. The
following If...Then statement uses a Between...And... comparison:

If x Between 0 And 100 Then
Note ”Data within range.”
Else
Note ”Data out of range.”
End If

The same program could be written another way:

If x >= 0 And x <= 100 Then
Note ”Data within range.”
Else
Note ”Data out of range.”
End If

When you use the = operator to compare two strings, MapBasic examines the entire length of both

strings, and returns TRUE if the strings are identical. String comparisons are not case sensitive; so this
If...Then statement considers the two names (“Albany” and “ALBANY”) to be identical:

Dim city name As String

city name = "ALBANY”

If city name = ”Albany” Then
Note ”City names match.”

End If

If you wish to perform case-sensitive string comparison, use the StringCompare() function, which is
described in the MapBasic Reference.

Note: Be careful when comparing fixed-length and variable-length strings. MapBasic automatically
pads every fixed-length string with spaces, if necessary, to ensure that the string fills the
allotted space. Variable-length strings, however, are not padded in this manner. Depending on
your data and variables, this difference might mean that two seemingly-identical strings are not
actually equal.

You can use the RTrim$() function to obtain a non-padded version of a fixed-length string. You then

can compare the value returned by RTrim$() with a variable-length string, without worrying about

interference from padded spaces.

Logical Operators: Logical operators operate on logical values to produce a logical result of TRUE or

FALSE:
Operator Returns TRUE if Example
And both operands are TRUE Ifa And b Then...
Or either operand is TRUE If a Orb Then...
Not operand is FALSE. If Not a Then...

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 85 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

For example, the following If...Then statement performs two tests, testing whether the variable x is less
than zero, and testing whether x is greater than ten. The program then displays an error message if
either test failed.

If x< 0 Or x > 10 Then
Note “Number is out of range.”
End If

Geographic Operators: These operators act on Object expressions to produce a logical result of

TRUE or FALSE.
Operator Returns TRUE if Example

Contains first object contains centroid of If a Contains b Then...
second object

Contains Part first object contains part of second | If a Contains Part b Then...
object

Contains Entire first object contains all of second If a Contains Entire b Then...
object

Within first object’s centroid is within sec- | If a Within b Then...
ond object

Partly Within part of first object is within second | If a Partly Within b Then...
object

Entirely Within all of first object is within second If a Entirely Within b Then...
object

Intersects the two objects intersect at some If a Intersects b Then...
point

For a more complete discussion of graphic objects, see Chapter 10: Graphical Objects.

MapBasic Operator Precedence

Some operators have higher precedence than others. This means that in a complex expression
containing multiple operators, MapBasic follows certain rules when determining which operations to
carry out first. To understand how MapBasic processes complex expressions, you must be familiar with
the relative precedence of MapBasic’s operators.

Consider the following mathematical assignment:
X =2+ 3 * 4

This assignment involves two mathematical operations addition and multiplication. Note that the end
result depends on which operation is performed first. If you perform the addition first (adding 2 + 3, to
obtain 5), followed by the multiplication (multiplying 5 * 4), the end result is 20. In practice, however,
multiplication has a higher precedence than addition. This means that MapBasic performs the
multiplication first (multiplying 3 * 4, to obtain 12), followed by the addition (adding 2 + 12, to obtain 14).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 86 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

You can use parentheses to override MapBasic’s default order of precedence. The following
assignment uses parentheses to ensure that addition is performed before multiplication:

X = (2 + 3) * 4

The following table identifies the precedence of each MapBasic operator.

Highest priority: parentheses
exponentiation
negation
multiplication, division, Mod, integer division
addition, subtraction, string concatenation (&)
geographic operators, comparison operators, Like
Not
And

Lowest Priority: Or

Operators appearing on the same row have equal precedence. Operators of higher priority are
processed first. Operators of the same precedence are evaluated left to right in the expression, except
exponentiation, which evaluates from right to left.

Looping, Branching, and Other Flow-Control

Flow-control statements affect the order in which other statements are executed. MapBasic has three
main types of flow-control statements:

¢ Branching statements cause MapBasic to skip over certain statements in your program (for
example, If...Then, GoTo).

* Looping statements cause MapBasic to repeatedly execute one or more designated
statements in your program (for example, For...Next, Do...While).

¢ Other statements provide special flow-control (for example, End Program).

If...Then Statement

MapBasic’s If...Then statement is very similar to comparable If...Then statements in other languages.
The If...Then statement tests a condition; if the condition is TRUE, MapBasic executes the statements
which follow the Then keyword. In the following example, MapBasic displays an error message and
calls a sub-procedure if a counter variable is too low:

If counter < 0 Then
Note "Error: The counter is too low.”
Call reset_counter

End If

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 87 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

An If...Then statement can have an optional Else clause. In the event that the original test condition
was FALSE, MapBasic executes the statements following the Else keyword instead of executing the
statements following the Then keyword. The following example demonstrates the optional Else clause.

If counter < 0 Then
Note "Error: The counter is too low.”
Call reset counter

Else
Note ”The counter is OK.”

End If

An If...Then statement can also have one or more optional Elself clauses. The Elself clause tests an
additional condition. If the statement includes an Elself clause, and if the original condition turned out
to be FALSE, MapBasic will test the Elself clause, as in the following example:

If counter < 0 Then
Note "Error: The counter is too low.”
Call reset counter
ElseIf counter > 100 Then
counter = 100
Note ”"Error: The counter is too high; resetting to 100.”
Else
Note ”“The counter is OK.”
End If

Note: Elself is a single keyword. A single If...Then statement can include a succession of two or
more Elself clauses, subsequently testing for condition after condition. However, if you want to
test for more than two or three different conditions, you may want to use the Do...Case
statement (described below) instead of constructing an If...Then statement with a large
number of Elself clauses.

Do Case Statement

The Do Case statement performs a series of conditional tests, testing whether a certain expression is
equal to one of the values in a list of potential values. Depending on which value the expression
matches (if any), MapBasic carries out a different set of instructions.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 88 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

The following example tests whether the current month is part of the first, second, third, or fourth
quarter of the fiscal year. If the current month is part of the first quarter (January-February-March), the
program assigns a text string an appropriate title (“First Quarter Results”). Alternately, if the current
month is part of the second quarter, the program assigns a different title (“Second Quarter Results”),
etc.

Dim current month, quarter As Smalllnt,
report title As String
current _month = Month(CurDate())
' At this point, current_month is 1 if current date
’ is in January, 2 if current date is in February, etc.
Do Case current month
Case 1, 2, 3
' If current month is 1 (Jan), 2 (Feb) or 3 (Mar),
'’ we’re in the First fiscal quarter.
' Assign an appropriate title.
report_title = “First Quarter Results”
quarter = 1
Case 4, 5, 6
report title = ”"Second Quarter Results”
quarter = 2
Case 7, 8, 9
report title
quarter = 3
Case Else

7

"Third Quarter Results”

" If current month wasn’t between 1 and 9, then
' current date must be in the Fourth Quarter.

’

report title = ”"Fourth Quarter Results”
quarter = 4
End Case

Note: The Case Else clause in the final part of the Do Case construction. Case Else is an optional
clause. If a Do Case statement includes a Case Else clause, and if none of the previous Case
clauses matched the expression being tested, MapBasic carries out the statements following
the Case Else clause. The Case Else clause must be the final clause in the Do Case
construction.

GoTo Statement

The GoTo statement tells MapBasic to go to a different part of the program and resume program
execution from that point. The GoTo statement specifies a label. For the GoTo statement to work,
there must be a label elsewhere within the same procedure. A label is a name which begins a line.
Each label must end with a colon (although the colon is not included in the GoTo statement).

If counter < 0 Then
GoTo get_out
End If

get_out:
End Program
Many programming professionals discourage the use of GoTo statements. Careful use of other flow-

control statements, such as If...Then, usually eliminates the need to use GoTo statements. Thus, you
may want to avoid using GoTo statements.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 89 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

For...Next Statement

The For...Next statement sets up a loop that executes a specific number of times. With each iteration
of the loop, MapBasic executes all statements that appear between the For and Next clauses. When
creating a For...Next loop, you must specify the name of a numeric variable as a counter. You must
also specify that counter variable’s starting and ending values. With each iteration of the loop,
MapBasic increments the counter variable by some step value. By default, this step value is one. To
use a different increment, include the optional Step clause.

The following example uses a For...Next loop to add the values from an array of numbers:

Dim monthly sales(12), grand total As Float,
next one As SmallInt

ﬁgé next_one = 1 To 12
grand_total = grand_total + monthly sales (next one)

Next
At the start of the For...Next statement, MapBasic assigns the start value to the counter variable. In the
example above, MapBasic assigns a value of one to the variable: next_one. MapBasic then executes
the statements that appear up to the Next keyword. After each iteration of the loop, MapBasic
increments the counter variable. If the counter variable is less than or equal to the end value (for
example, if next_one is less than or equal to twelve), MapBasic performs another iteration of the loop.

A For...Next loop halts immediately if it encounters an Exit For statement. This allows you to
conditionally halt the loop prematurely.

Note: If you construct a For...Next loop which uses precise floating-point values (for example, For i =
0.1 to 1.0 Step 0.1), the loop may behave differently on MaplInfo for Macintosh than it behaves
on Maplnfo for Windows (i.e., there may be one more loop iteration with Macintosh than with
Windows). This is a result of the way that floating-point math is handled internally on the
Macintosh.

See the MapBasic Reference for more information on the For...Next loop.

Do...Loop

The Do...Loop statement continually executes a group of statements for as long as a test condition
remains TRUE or, optionally, for as long as the condition remains FALSE.

There are different forms of the Do...Loop statement, depending on whether you want to test the
looping condition before or after the body of the statements that are executed. The following program
tests the loop condition at the end of the loop:

Dim sales total, new accounts(10) As Float,
next one As SmallInt
next_one = 1
Do
sales total = sales total + new_accounts (next one)
next_one = next_one + 1
Loop While next one <= UBound(new_accounts)

Note that the preceding loop always executes for at least one iteration, because the looping condition
is not tested until the end of the loop.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 90 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

The following loop tests the loop condition at the start of the loop. Because the condition is tested at the
start of the loop, the statements within the body of the loop may never be executed. If the test condition
is FALSE from the beginning, the statements within the following Do...Loop will never be executed.

Dim sales_total, new accounts(10) As Float,
next one As Smalllnt
next one = 1
Do While next one <= UBound(new_accounts)
sales_total = sales_total + new_accounts (next_one)
next_one = next_one + 1
Loop
In the examples above, both Do...Loop statements included the keyword While; thus, both loops
continue while the test condition remains TRUE. Alternately, a Do...Loop can use the Until keyword
instead of the keyword While. If a Do...Loop statement specifies Until, the loop will continue only for

as long as the test condition remains FALSE.

A Do...Loop statement halts immediately if it encounters an Exit Do statement. This statement allows
you to conditionally terminate a loop prematurely.

While...Wend Loop

MapBasic supports the conventional BASIC While...Wend loop syntax. A While...Wend statement is
very similar to a Do While...Loop statement.

If you are an experienced BASIC programmer, and you therefore are in the habit of using
While...Wend statements, you can continue to use While...Wend statements as you use MapBasic.
Note, however, that the Do...Loop statement syntax is in some ways more powerful than the
While...Wend syntax. You can exit a Do...Loop statement prematurely, through the Exit Do statement,
but there is no corresponding statement for exiting a While...Wend loop.

See the MapBasic Reference for more information on the While...Wend loop.

Ending Your Program

The End Program statement halts the MapBasic application, removes any custom menu items
created by the application, and removes the application from memory. End Program also closes any
files opened by the application (through the Open File statement), but it does not close any open
tables.

The End Program statement is not required. In fact, there are situations where you should be careful
not to issue an End Program statement. For example, if your application adds menu items to a
Maplnfo Professional menu, you probably want your application to remain running for the duration of
the Maplnfo Professional session, because you want your custom menu items to remain available for
the entire session. In such cases, you should be careful not to issue the End Program statement,
because End Program would halt your application and remove your application’s custom menu items.
For a complete discussion of custom menus, see Chapter 7: Creating the User Interface.

Ending Your Program and Mapinfo Professional

The End Maplnfo statement halts the MapBasic application (much as the End Program statement
does), and then exits the Maplnfo Professional software as well.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 91 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Procedures

Procedures (often referred to as sub-procedures) are an integral part of the MapBasic program
architecture. A typical MapBasic program is comprised of numerous sub-procedures; each sub
procedure contains a group of statements that perform a specific task. By breaking your program into
several sub-procedures, you modularize your program, making program development and
maintenance easier in the long run.

Main Procedure

Every MapBasic program has at least one procedure, known as the Main procedure. When you run a
MapBasic application, MapBasic automatically calls that application’s Main procedure.

The following program demonstrates the syntax for explicitly declaring the Main procedure. In this
example, the Main procedure simply issues a Note statement:

Declare Sub Main
Sub Main
Note ”"Hello from MapBasic!”

End Sub
The Declare Sub statement tells MapBasic that a sub-procedure definition will occur further down. You
must have one Declare Sub statement for each sub-procedure in your program. The Declare Sub
statement must appear before the actual sub-procedure definition. Typically, Declare Sub statements
appear at or near the top of your program.

You may recall from Chapter 4: Using the Development Environment that a MapBasic program can
be as simple as a single line. For example, the following statement:

Note "Hello from MapBasic!”

is a complete MapBasic program which you can compile and run. Note that even a simple, one-line
program has a Main procedure. However, in this case, we say that the Main procedure is implied
rather than being explicit.

Calling a Procedure

When you run a compiled application, MapInfo Professional automatically calls the Main procedure
(regardless of whether the Main procedure is implied or explicitly defined). The Main procedure can
then call other sub-procedures through the Call statement.

The following program contains two procedures: a Main procedure, and a procedure called
announce_date.

Declare Sub Main
Declare Sub announce date

Sub Main
Call announce date()
End Sub

Sub announce_ date
Note ”"Today’s date is ” + Str$(CurDate())
End Sub

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 92 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Calling a Procedure That Has Parameters

Like other modern BASIC languages, MapBasic lets you create sub-procedures which take
parameters. If a sub-procedure takes parameters, they are declared within parentheses which follow
the procedure name in the Sub...End Sub statement.

The following example shows a sub-procedure called check_date, which takes one parameter (a Date
value). The sub-procedure checks to see whether the value of the Date parameter is too old (more

than 180 days old). If the Date parameter value is too old, the procedure sets the Date parameter to the
current date.

Declare Sub Main
Declare Sub check date(last date As Date)

Sub Main
Dim report_date As Date
report date = ”01/01/94"

Call check date(report date)

' At this point, the variable: report date

' may contain the current date (depending on

' what happened in the check_date procedure) .
End Sub

Sub check date(last date As Date)
Dim elapsed days As SmallInt
elapsed days = CurDate() - last date
If elapsed days > 180 Then
last_date = CurDate()
End If
End Sub

Passing Parameters By Reference

By default, each MapBasic procedure parameter is passed by reference. When a parameter is passed
by reference, the following rules apply:

¢ The Call statement must specify the name of a variable for each by-reference parameter.

* Ifthe called sub-procedure assigns a new value to a by-reference parameter, the new value is
automatically stored in the caller’s variable. In other words, the sub- procedure can use a by-
reference parameter to return a value to the caller.

Thus, in the example above, the Call statement specifies the name of a Date variable report_date:
Call check date(report date)

Then, within the check _date procedure, the parameter is known by the name last_date. When the
check date procedure performs the assignment last_date = CurDate(), MapBasic automatically
updates the Main procedure’s report_date variable.

Passing Parameters By Value

Sometimes, it is awkward to pass parameters by reference. For each by-reference parameter, you
must specify the name of a variable in your Call statement. At times, you may find this awkward (for
example, because you may not have a variable of the appropriate type).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 93 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Like other modern BASIC languages, MapBasic lets you specify that a procedure parameter will be
passed by value rather than by reference. To specify that a parameter be passed by value, include the
keyword ByVal before the parameter’s name in the Sub...End Sub statement.

When a parameter is passed by value, the following rules apply:

* The Call statement does not need to specify the name of a variable as the parameter. The Call
statement may specify a variable name, a constant value or some other expression.

e If the called sub-procedure assigns a new value to a by-value parameter, the calling procedure
is not affected. In other words, the sub-procedure cannot use a by-value parameter to return a
value to the caller.

The following example shows a procedure (display_date _range) which takes two by-value Date
parameters.

Declare Sub Main
Declare Sub display_date_range (ByVal start date As Date,
ByVal end date As Date)

Sub Main
Call display date range(”1/1”, CurDate())
End Sub

Sub display_date_range (ByVal start date As Date,
ByVal end date As Date)
Note ”The report date range will be: ” + Str$(start date)
+ " through ” + Str$(end date) + ”.”
End Sub
In this example, both of the parameters to the display_date _range procedure are by-value date

parameters. Thus, when the Main procedure calls display_date_range:

Call display date range(”1/1”, CurDate())

neither of the parameters needs to be a Date variable. The first parameter (“1/1”) is a constant Date
expression, and the second parameter is a date expression derived by calling the CurDate() function.

Calling Procedures Recursively

The MapBasic language supports recursive function and procedure calls. In other words, a MapBasic
procedure can call itself.

Programs that issue recursive procedure or function calls may encounter memory limitations. Each
time a program makes a recursive call, Maplnfo Professional must store data on the stack; if too many
nested recursive calls are made, the program may generate an out-of-memory error. The amount of
memory used up by a recursive call depends on the number of parameters and local variables
associated with the procedure or function.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 94 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Procedures That Act As System Event Handlers

Some procedure names have special meaning in MapBasic. For example, as we have seen, the sub-
procedure named Main is special, since MapBasic automatically calls the Main procedure when you
run an application.

In addition to Main, MapBasic has several other special procedure names: EndHandler,
ForegroundTaskSwitchHandler, RemoteMapGenHandler, RemoteMsgHandler,
RemoteQueryHandler(), SelChangedHandler, ToolHandler, WinChangedHandler,
WinClosedHandler, and WinFocusChangedHandler. Each of these reserved procedure names
plays a special role in MapBasic programming. To fully understand how they work, you need to
understand MapBasic’s approach to system events and event-handling.

What Is a System Event?

In a Graphical User Interface environment, the user controls what happens by typing and by using the
mouse. Technically, we say that mouse-clicks and other actions taken by the user generate system
events. There are many different kinds of events; for example, when the user chooses a menu item, we
say that the user has generated a menu-choose event, and when the user closes a window, we say the
user has generated a window-close event.

What Is an Event Handler?

An event-handler is part of a MapBasic program which responds to a system event. Once the user has
generated an event, the application must respond accordingly. For instance, when the user generates
a menu-choose event, the software may need to display a dialog. Alternately, when the user generates
a window-close event, the software may need to gray out a menu item or hide an entire menu.

In MapBasic, sub-procedures can act as event-handlers. In other words, you can construct your
program in such a way that MapBasic automatically calls one of your sub-procedures when and if a
certain system event occurs.

To build event-handlers that respond to menu or button-pad choices, see Chapter 7: Creating the
User Interface. To build any other types of system event-handlers, you must define a sub-procedure
with a special name. For example, if you want your program to respond automatically whenever the
user closes a window, your application must contain a procedure named WinClosedHandler.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 95 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

The following table lists all of MapBasic’s special handler names. These special handlers are
discussed in more detail in the MapBasic Reference and online Help.

Nature of Handler Procedure or Function
Special Handler Name (see Reference for details)

EndHandler Called when the application terminates or when the user exits
Maplnfo Professional. EndHandler can be used to do clean-up
work (for example, deleting temporary work files).

ForegroundTaskSwitchHan- | Called when Mapinfo Professional gets the focus (becomes the
dler active application) or loses the focus.

RemoteMapGenHandler Called when an OLE Automation client calls the MapGenHandler
method; used primarily in MapInfo ProServer applications.

RemoteMsgHandler Called when the application is acting as the server in an interpro-
cess conversation, and the remote client sends an execute
request.

RemoteQueryHandler() Called when the application is acting as the server in an interpro-

cess conversation, and the remote client sends a peek request.

SelChangedHandler Called whenever the Selection table changes. Since the Selec-
tion table changes frequently, the SelChangedHandler procedure
should be as brief as possible to avoid slowing system perfor-
mance.

ToolHandler Called when the user clicks in a Mapper, Browser, or Layout win-
dow using the MapBasic tool.

WinChangedHandler Called when the user pans, scrolls, or otherwise resets the area
displayed in a Mapper.

Since Mapper windows can change frequently, the Win-
ChangedHandler procedure should be as brief as possible to
avoid slowing system performance.

WinClosedHandler Called when the user closes a Mapper, Browser, Grapher, or
Layout.

WinFocusChangedHandler Called when the window focus changes (i.e., when the user
changes which window is the active window).

Typically, you do not use the Call statement to call the special procedures listed above. If your program
contains one of these specially named procedures, MapBasic calls that procedure automatically, when
and if a certain type of system event occurs. For example, if your program contains a procedure called
WinClosedHandler, MapBasic automatically calls the WinClosedHandler procedure every time the
user closes a window.

All of the special handler procedures are optional. Thus, you should only include a WinClosedHandler
procedure in your application if you want your application to be notified every time a window is closed.
You should only include a SelChangedHandler procedure in your application if you want your
application to be notified each time Selection changes, etc.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 96 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

The following program defines a special event-handler procedure named ToolHandler. Note that this
program does not contain any Call statements. Once this program is running, MapBasic calls the
ToolHandler procedure automatically, when and if the user selects the MapBasic tool and clicks on a
Mapper, Browser, or Layout window.

Include "mapbasic.def”
Declare Sub Main
Declare Sub ToolHandler
Sub Main
Note ”"The ToolHandler demonstration is now in place.
+ "Select the MapBasic tool (+) and click on a Map ”
+ "to see a printout of map coordinates.”
End Sub
Sub ToolHandler
If WindowInfo(FrontWindow (),

"

WIN INFO TYPE) = WIN MAPPER Then
Print ”X: ” + Str$(CommandInfo (CMD_ INFO X))
Print ”Y: ” + Str$(CommandInfo (CMD_INFO_Y))
Print ” ”
End If
End Sub

Within a system event handler procedure, you can call the CommandInfo() function to learn more
about the event that made MapBasic call the handler. In the example above, the ToolHandler
procedure calls Commandinfo() to determine the map coordinates where the user clicked.

The following sample SelChangedHandler procedure appears in the sample program, TextBox
(textbox.mb). This procedure automatically disables (grays out) a menu item whenever the user de-
selects all rows, and automatically re-enables the menu item whenever the user selects more rows.

See textbox.mb for more details.

Sub SelChangedHandler
If SelectionInfo(SEL INFO NROWS) < 1 Then
Alter Menu Item create sub Disable
Else
Alter Menu Item create_ sub Enable
End If
End Sub

When Is a System Event Handler Called?

By default, a MapBasic application terminates after executing all statements in the Main procedure.
However, if an application contains one or more of the special handler procedures listed above (for
example, if an application contains a ToolHandler procedure), the application remains in memory after
the Main procedure is finished. An application in this state is said to be sleeping. A sleeping application
remains dormant in memory until an appropriate event occurs (for example, until the user clicks with
the MapBasic tool). When the event occurs, MapBasic automatically calls the sleeping application’s
handler procedure.

Note: If any procedure in an application issues the End Program statement, the entire application is
removed from memory, regardless of whether the application contains special handler
procedures. You must avoid using the End Program statement for as long as you want your
program to remain available.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 97 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Custom MapBasic menus work in a similar manner. If a MapBasic application adds its own items to the
Maplinfo Professional menu structure, the application goes to sleep and waits for the user to choose
one of the custom menu items. For a complete discussion of how to customize MaplInfo Professional’s
menus, see Chapter 7: Creating the User Interface.

Tips for Handler Procedures

Keep Handler Procedures Short

Bear in mind that some system event-handler procedures are called frequently. For example, if you
create a SelChangedHandler procedure, Mapinfo Professional calls the procedure every time the
Selection table changes. In a typical MapInfo Professional session, the Selection table changes
frequently, therefore, you should make event-handler procedures, such as SelChangedHandler, as
short as possible.

Selecting Without Calling SelIChangedHandler

If you are using a Select statement, but you do not want the statement to trigger the
SelChangedHandler procedure, include the NoSelect keyword. For example:

Select * From World Into EarthQuery NoSelect

Preventing Infinite Loops

Performing actions within a system handler procedure can sometimes cause an infinite loop. For
example, if you declare a SelChangedHandler procedure, Maplinfo Professional calls that procedure
whenever the selection changes. If you issue a Select statement inside of your SelChangedHandler
procedure, the Select statement will cause Maplnfo Professional to call the procedure again in a
recursive call. The end result can be an infinite loop, which continues until your program runs out of
memory.

The Set Handler statement can help prevent infinite loops. At the start of your handler procedure,
issue a Set Handler ... Off statement to prevent recursive calling of the handler. At the end of the
procedure, issue a Set Handler ... On statement to restore the handler.

Sub SelChangedHandler
Set Handler SelChangedHandler Off

' Issuing a Select statement here
" will not cause an infinite loop.

Set Handler SelChangedHandler On
End Sub

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 98 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Custom Functions

The MapBasic language supports many different functions. Some are standard BASIC functions (for
example, Asc(), Format$(), Val(), etc.) and some are unique to MaplInfo Professional and MapBasic
(for example, Distance() and ObjectGeography()). MapBasic also lets you define custom functions.
Once you have defined a custom function, you can call that function just as you can call any of
MapBasic’s standard functions.

The body of a custom function is defined within a Function...End Function construction, which is
syntactically very similar to a Sub...End Sub construction. The general syntax of a Function...End
Function construct is as follows:

Function function name(parameters, if any) As data type
statement 1list
End Function
The function itself has a data type. This dictates which type of value (for example, Integer, Date, String)
the function returns when called.

Within the body of the Function...End Function construction, the function name acts like a by-
reference parameter. A statement within the Function...End Function construction can assign a value
to the function name; this is the value that MapBasic later returns to the function’s caller.

The example below defines a custom function called money_format(). The money_format() function
takes one numeric parameter (presumably representing a sum of money), and returns a string
(obtained by calling the Format$() function) representing the dollar amount, formatted with commas.

Declare Sub Main
Declare Function money format (ByVal num As Float) As String
Sub Main

Dim dollar amount As String

dollar amount = money format (1234567.89)

' dollar amount now contains the string: ”$1,234,567.89"
End Sub

Function money format (ByVal num As Float) As String
money format = Formats (num, ”$,#.##; (3, #.4##)")
End Function

Scope of Functions

A program can define a custom function that has the same name as a standard MapBasic function.
When the program calls the function, the custom function is executed instead of the standard function.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 99 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Compiler Instructions

MapBasic provides two special statements which make it easier to manage large-scale application
development:

¢ The Define statement lets you define a shorthand identifier which has a definition; the
definition is substituted for the identifier at compile time.

* The Include statement lets you combine two or more separate program files into one
compilable program.

The Define Statement

Through the Define statement, you can define an identifier which acts as a shorthand equivalent for
some specific value.

Use a Define statement whenever you find yourself frequently typing an expression that is difficult to
remember or to type.

For example, if your program deals extensively with objects and object colors, you might find that you
frequently need to type in the value 16711680, a numeric code representing the color red. Typing such
a long number quickly becomes tedious. To spare yourself the tedium of typing in 16711680, you could
place the following Define statement in your program:

Define MY_COLOR 16711680

This Define statement creates an easy-to-remember shorthand keyword (MY_COLOR) representing
the number 16711680. After you enter this Define statement, you can simply type MY_COLOR in
every place where you would have typed 16711680. When you compile your program, MapBasic will
assign each occurrence of MY_COLOR a value of 16711680.

There are long-term benefits to using defined keywords. Suppose that you develop a large application
which includes many references to the identifier MY_COLOR. Lets presume that you then decide that
red is not a good color choice, and you want to use green (65280) instead. You could easily make the
switch from red to green simply by changing your Define statement to read:

Define MY COLOR 65280

The standard MapBasic definitions file, mapbasic.def, contains many Define statements, including
Define statements for several commonly-used colors (BLACK, WHITE, RED, GREEN, BLUE, CYAN,
MAGENTA, and YELLOW). Use the Include statement to incorporate mapbasic.def into your program.

The Include Statement

Through the Include statement, you can incorporate two or more separate program files into one
MapBasic application. The Include statement has the following syntax:

Include ”filename”

where filename is the name of a text file containing MapBasic statements. When you compile a
program that contains an Include statement, the compiler acts as if the included text is part of the
program being compiled.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 100 MB_UG.pdf

User Guide Chapter 5: MapBasic Fundamentals

Many MapBasic applications use the Include statement to include the standard MapBasic definitions
file, mapbasic.def:

Include "mapbasic.def”

mapbasic.def provides Define statements for many standard MapBasic identifiers (TRUE, FALSE,
RED, GREEN, BLUE, TAB_INFO_NAME, etc.).

The filename that you specify can include a directory path. If the filename that you specify does not
include a directory path, the MapBasic compiler looks for the file in the current working directory. If the
file is not found in that directory, the compiler looks in the directory where the MapBasic software is
installed.

As you develop more and more MapBasic programs, you may find that you use certain sections of
code repeatedly. Perhaps you have written a library of one or more custom functions, and you wish to
use those custom functions in every MapBasic program that you write. You could put your custom
functions into a separate text file, perhaps calling the text file functs.mb. You could then incorporate the
function library into another program by issuing the statement:

Include ”"functs.mb”

Using Include statements also lets you work around the memory limitations of the MapBasic text
editor. As discussed in Chapter 4: Using the Development Environment, each MapBasic edit
window is subject to memory limits; once a program file grows too large, you can no longer add
statements to the file using a MapBasic edit window. If this happens, you may want to break your
program into two or more separate program files, then combine the files using the Include statement.
Alternately, you could combine the separate modules using a project file; see Using the Development
Environment in Chapter 4 on page 56 for details.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 101 MB_UG.pdf

User Guide

Chapter 5: MapBasic Fundamentals

Program Organization

A MapBasic application can include any or all of the different types of statements described in this
chapter. However, the different pieces of a MapBasic program must be arranged in a particular
manner. For example, Global statements may not be placed inside of a Sub...End Sub definition.

The following illustration shows a typical arrangement of the various program components.

Global level statements appear at the top of the program . . .

Include “mapbasic.def”
other Include statements
Type...End Type statements
Declare Sub statements
Declare Function statements
Define statements

Global statements

.. . followed by the Main procedure definition . . .

Sub Main
Dim statements

End Sub

. . . followed by additional sub-procedure definitions . . .

Sub ...
Dim statements

End Sub
. .. and custom Function definitions . . .

Function
Dim statements

End Function

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 102

MB_UG.pdf

Debugging and Trapping
Runtime Errors

Even if your program compiles successfully, it may still contain runtime
errors (errors that occur when you run your program). For example, if your
program creates large database files, the program may generate an error
condition if you run it when there is no free disk space.

This chapter shows you how to deal with runtime errors. This is a two-
step process: first, you debug your program to find out where the error
occurs; then, you modify your program to prevent the error from
happening again.

Sections in this Chapter:

¢ Runtime ErrorBehavior............................ 104
¢+ Debugging a MapBasic Program 104
¢ ErrorTrapping.ccoiiiiiiiiiiiii e eennnnnnns 106

£ Maplnfo.

User Guide Chapter 6: Debugging and Trapping Runtime Errors

Runtime Error Behavior

There are two main types of programming errors: compilation errors and runtime errors. Compilation
errors, discussed in Chapter 4: Using the Development Environment, are syntax errors or other
typographical mistakes that prevent a program from compiling successfully.

runtime errors are errors that occur when the user actually runs an application. runtime errors occur for
various reasons; often, the reason has to do with precise conditions that exist at runtime. For example,
the following statement compiles successfully:

Map From stats

However, if there is no table named “stats,” this program will generate a runtime error. When a runtime
error occurs, Maplnfo halts the MapBasic application, and then displays a dialog describing the error.

M apinfo

@ [rap_it.mb: 2] Table statz i not open.

The error message identifies the name of the program file and the line number at which the error
occurred. In the example above, the name of the program is map_it, and the line number containing
the error is 22. This line number identifies which part of your program caused the runtime error. Once
you know the line number, you can return to the MapBasic development environment and use the Go
To Line command (on the Search menu) to locate the statement that caused the problem.

Debugging a MapBasic Program

Some runtime errors are easy to correct. For example, some runtime errors can be caused by modest
typing errors (for example, in the example above, the programmer probably meant to enter the table
name as STATES instead of STATS). Other errors, however, can be harder to locate. To help you
detect and correct bugs in your program, MapBasic provides debugging tools (the Stop and Continue
statements) which work in conjunction with MapInfo’s MapBasic Window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 104 MB_UG.pdf

User Guide Chapter 6: Debugging and Trapping Runtime Errors

Summary of the Debugging Process

If part of your program is not working correctly, you can use the following procedure to identify where
the problem occurs:

1. Within the MapBasic development environment, edit your program, and place a Stop
statement just before the part of your program that seems to be failing.

2. Recompile and run your program.
When your program reaches the Stop statement, MapBasic temporarily suspends execution of
your program and displays a debugging message in the MapBasic window (for example,
“Breakpoint at textbox.mb line 23”).

3. Within the MapBasic window:
Type ? Dim to see a list of all local variables that are in use.

Type ? Global to see a list of all global variables that are in use.
Type ? variable_name to see the current contents of a variable.
Type ? variable_name = new_value to change the contents of that variable.

4. When you are finished examining and modifying the contents of variables, type Continue in the
MapBasic window to resume program execution. Alternately, you can choose the Continue
Program command from Maplnfo’s File menu. Note that while a program is suspended, the
File menu contains a Continue Program command instead of a Run Program command.

B MapB azic _ (O]

** Breakpoint at: C:\MAPINFO\MB\map_it. mb line 17

T DIM
i_count

? GLOBAL
gs_addr
gi_counter

? GI_COUNTER
3

?GI_COUNTER =5
5

CONTINUE |

Limitations of the Stop Statement

In the following cases, MapBasic does not allow you to suspend a program through the Stop
statement:

* You may not use a Stop statement within a custom Function...End Function construct.

¢ You may not use a Stop statement within a Dialog control handler, because while the handler
is active, the dialog is still on the screen.

* You may not use a Stop statement within a ProgressBar handler.
¢ You may not debug one program while another program is running.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 105 MB_UG.pdf

User Guide Chapter 6: Debugging and Trapping Runtime Errors

e Through the Run Application statement, one MapBasic application can “spawn” another
application. However, you may not use the Stop statement to suspend execution of the
spawned application.

Even without using the Run Application statement, it is possible to run separate MapBasic
programs at one time. For example, if you run the TextBox application, TextBox creates its own
custom menu, then remains sleeping until you choose an item from that menu. After loading
TextBox, you can run other MapBasic applications. However, you may not use the Stop
statement while you have multiple applications running simultaneously.

Other Debugging Tools

MapBasic’s Note and Print statements are also helpful when debugging a program. For example, if
you wish to observe the contents of a variable as it changes, simply add a Print statement to your
program:

Print ”Current value of counter: ” + counter

to print a message to MapBasic’s Message window. The sample program Applnfo.mbx allows you to
examine the values of global variables in any MapBasic applications that are running.

Error Trapping

A well-designed program anticipates the possibility of runtime errors and includes precautions
whenever possible. Intercepting and dealing with runtime errors is known as error trapping. In
MapBasic, error trapping involves using the OnError statement.

Veteran BASIC programmers take note: in MapBasic, OnError is a single keyword.

At any point during execution, error trapping is either enabled or disabled. By default, all procedures
and functions start with error trapping disabled. The OnError statement enables error trapping.

Typically, OnError specifies a label that must appear at another location in the same procedure or
function. The statements following the label are known as the error-trapping routine. If an error occurs
while an error-trapping routine has been enabled, MapBasic jumps to the specified label and executes
the error-trapping routine instead of halting the application.

Within the error-trapping routine, you can call the Err() function to obtain an Integer code indicating
which error occurred. Similarly, Error$() returns a string describing the error message. For a complete
listing of potential MapBasic error codes and their descriptions, see the text file errors.doc which is
included with MapBasic.

Within the error-trapping routine, you can call the Err() function to obtain an Integer code indicating
which error occurred. Similarly, Error$() returns a string describing the error message. For a complete
listing of potential MapBasic error codes and their descriptions, see the text file Error List, which is
included with MapBasic. Each error-trapping routine ends with a Resume statement. The Resume
statement tells MapBasic which line to go to once the error-trapping routine is finished.

For more about error trapping, see OnError, Resume, Err() and Error$() in the MapBasic Reference.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 106 MB_UG.pdf

User Guide Chapter 6: Debugging and Trapping Runtime Errors

Note: MapBasic can only handle one error at a time. If you enable error-trapping and then an error
occurs, MapBasic jumps to your error-handling routine. If another error occurs within the error-
handling routine (i.e., before the Resume statement), your MapBasic application halts.

Example of Error Trapping

The program below opens a table called orders and displays it in Map and Browse windows. An error-
trapping routine called bad_open handles any errors that relate to the Open Table statement. A
second error-trapping routine called not_mappable handles errors relating to the Map statement.

Sub orders_ setup
" At the start, error trapping is disabled
OnError Goto bad open
' At this point, error trapping is enabled, with
! bad_open as the error-handling routine.
Open Table "orders.tab”
OnError Goto not mappable

" At this point, error trapping is enabled, with
' not_mappable as the new error-handling routine.
Map From orders

OnError Goto 0

Browse * From orders

last exit:
Exit Sub
' The Exit Sub prevents the program from
' unintentionally executing the error handlers.

bad open:
' This routine called if Open statement had an error.
Note ”Couldn’t open the table Orders... Halting.”

Resume last_exit

not mappable:
’ This routine called if the Map statement had an error
Note ”No map data; data will only appear in Browser.”
Resume Next

End Sub

The statement OnError Goto bad_open enables error trapping. If an error occurs because of the
Open Table statement, MapBasic jumps to the error-trapping routine at the label bad_open. The error-
trapping routine displays an error message, then issues a Resume statement to resume execution at
the label last_exit.

If the Open Table statement is successful, the program then issues the statement OnError Goto
not_mappable. This line resets the error trapping, so that if the Map statement generates an error,
MapBasic jumps to not_mappable. The not_mappable error-trapping routine displays a message
telling the user why no Mapper window was presented, and then executes a Resume Next statement.
The Resume Next statement tells MapBasic to skip the line that generated the error, and resume with
the following statement.

The OnError Goto 0 statement disables error trapping. Thus, if an error occurs as a result of the
Browse statement, that error is not trapped, and program execution halts.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 107 MB_UG.pdf

Creating the User Interface

The user interface is an important part of every application. MapBasic
provides you with all the tools you need to customize Maplinfo
Professional’s user interface.

Sections in this Chapter:

+ Introduction to MapBasic User Interface Principles. 109
¢ Event-Driven Programming. 109
¢ MenuUS 111
¢ Standard DialogBoxesciiiinnnnnn 121
¢ CustomDialogBoxesc ... 123
¢ WIiNdowst i e 131
¢ ButtonPads (Toolbars)............................. 138
+ Integrating Your Application Into Mapinfo Professional. . 145
¢+ Performance Tips for the UseriInterface 147

£ Maplnfo.

User Guide Chapter 7: Creating the User Interface

Introduction to MapBasic User Interface Principles

By writing a MapBasic program, you can create a custom user interface for Maplnfo Professional. A
MapBasic program can control the following elements of the user interface:

* Menus: MapBasic programs can add custom menu items to existing menus, remove menus
from the menu bar, and create entirely new menus.

» Dialogs: MapBasic programs can display custom dialog boxes, tailored to fit the users’ needs.

¢ Windows: MapBasic programs can display standard types of MaplInfo Professional windows
(for example, Map and Browse windows) and customize the contents of those windows.
MapBasic can also display messages in a special window (the Message window) and on the
Maplinfo Professional status bar.

* ButtonPads (also known as toolbars): MapBasic programs can add custom buttons to existing
ButtonPads, or create entirely new ButtonPads. Maplinfo Professional includes a special
ButtonPad, Tools, to provide a place where MapBasic utilities can add custom buttons. For
example, the ScaleBar application adds its custom button to the Tools pad.

The sample application, OverView, demonstrates many aspects of a custom interface created in
MapBasic. When the user runs OverView, MapBasic adds custom items to the Tools menu. If the user
chooses the custom Setup Overview menu item, MapBasic displays a custom dialog. If the user
chooses a table from this dialog, MapBasic opens a new Map window to display the table.

Event-Driven Programming

MapBasic follows a programming model known as event-driven programming. To understand how a
MapBasic program can create a custom user interface, you must first understand the basic principles
of event-driven programming.

What Is an Event?

In a Graphical User Interface environment, the user controls what happens by typing and by using the
mouse. Technically, we say that mouse-clicks and other actions taken by the user generate events.
There are many different kinds of events; for example, when the user chooses a menu item, we say
that the user has generated a menu-choose event, and when the user closes a window, we say the
user has generated a window-close event.

What Happens When The User Generates A Menu Event?

When the user generates an event, the software must respond accordingly. Thus, when the user
chooses a menu item, the software may need to display a dialog or, depending on which menu item the
user chooses, the software may need to take some other action, such as opening or closing a table or
a window. In general, when the user generates an event, we say that the software handles the event.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 109 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

If a MapBasic application creates a custom menu, and the user chooses an item from that menu, the
MapBasic application handles the menu-choose event. Typically, the MapBasic application handles the
event by calling a procedure. In this situation, we say that the procedure acts as an event-handler, or
handler for short.

Thus, creating custom menu items is typically a two-step process:

1. Customize the Mapinfo Professional menu structure, using statements such as Create Menu
or Alter Menu.

2. Specify a handler for each custom menu item. A handler can be a sub-procedure that appears
elsewhere in your program. Set up each handler procedure to perform whatever tasks are
appropriate for the corresponding menu item(s). Alternately, instead of specifying a procedure
as the menu item’s handler, you can specify that the menu item call a standard Maplinfo
Professional command. Thus, you could create a custom menu item that invokes the Create
Thematic Map command (from Maplinfo Professional’s Map menu).

As noted in Chapter 4: Using the Development Environment, the Call statement lets you call a sub-
procedure. However, when a sub-procedure acts as an event-handler, you do not issue any Call
statements. Instead of issuing Call statements, you include a Calling clause within the Create Menu
statement.

For example, the TextBox application issues the following Create Menu statement:

Create Menu "TextBox” As

"&Create Text Boxes...” Calling create_ sub,
"Close TextBox” Calling Bye,
"About TextBox...” Calling About

This statement creates a custom menu with several menu items, each of which contains a Calling
clause (for example, Calling create_sub). Each Calling clause identifies the name of a procedure that
appears elsewhere in the TextBox.MB program. Thus, create_sub, Bye, and About are all sub-
procedure names.

When and if the user chooses the Create Text Boxes item from the TextBox menu, MapBasic
automatically calls the create_sub procedure. Thus, the create_sub procedure acts as the handler for
that menu item.

How Does a Program Handle ButtonPad Events?

Each button on a custom MapBasic ButtonPad has a handler procedure. Like the Create Menu
statement, the Create ButtonPad statement contains a Calling clause which lets you designate a
handler procedure. When the user works with a custom button, MapBasic calls the sub-procedure that
you named in the Create ButtonPad statement.

MapBasic lets you create different types of custom buttons. With custom PushButtons, MapBasic calls
the button’s handler the moment the user chooses the button. With custom ToolButtons, MapBasic
only calls the button’s handler if the user chooses the tool and then clicks on a window. For more
information, see the ButtonPads discussion later in this chapter.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 110 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

How Does a Program Handle Dialog Events?

Custom MapBasic dialogs can call handler procedures. Thus, if you create a custom dialog that
contains a check-box, MapBasic can call a handler procedure each time the user checks or clears the
check-box. However, depending on your application, you may not need to create handlers for your
dialogs. For a discussion of custom dialogs, see the discussion of Custom Dialogs later in this chapter.

Menus

Menus are an essential element of the graphical user interface. Accordingly, the MapBasic language
lets you control every aspect of MaplInfo Professional’s menu structure. With a few lines of code, you
can customize any or all of Maplnfo Professional’s menus or menu items.

Menu Fundamentals

MaplInfo Professional’s menu structure consists of the following elements:

The menu bar is the horizontal bar across the top of the Maplnfo Professional work area. The default
MaplInfo Professional menu bar contains words such as File, Edit, Objects, Query, etc.

A menu is a vertical list of commands that drops down if you click on the menu bar. For example, most
applications include a File menu and an Edit menu.

A menu item is an individual command that appears on a menu. For example, the File menu typically
contains menu items such as Open, Close, Save, and Print. Menu items are sometimes referred to as
commands (for example, the File > Save command.

Menu

Menu Bar_ | File Edit Objects Table Options Map Window Help

Select...
S0L Select...
elect All from World
Menu ltems UInzelect All

Find... Chrl+F
ind Selection

Calculate Statistics...

The concepts of menu, menu bar, and menu item are interrelated. Each menu is a set of menu items.
For example, the File menu contains items such as Open, Close, Save, etc. The menu bar is a set of
menus.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 111 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

When the user chooses a menu item, some sort of action is initiated. Different menu items invoke
different types of actions; some menu items cause dialog boxes to be displayed, while other menu
items produce an immediate effect.

The action associated with a menu item is referred to as the menu item’s handler. A menu item
handler can either be a standard Maplnfo Professional command code or a custom MapBasic sub-
procedure name. In other words, when the user chooses a menu item, Maplnfo Professional “handles”
the menu-choose event, either by running a standard command code or by calling a sub-procedure
from your application.

Adding New Items To A Menu
To add one or more custom items to an existing menu, use the Alter Menu statement.

For example, the following statement adds two custom menu items to the Query menu (one item called
Annual Report, and another item called Quarterly Report):

Alter Menu ”Query” Add
"Annual Report” Calling report sub,
"Quarterly Report” Calling report sub g
For each of the custom menu items, the Alter Menu statement specifies a Calling clause. This clause
specifies what should happen when and if the user chooses the menu item. If the user chooses the
Annual Report item, Maplnfo Professional calls the sub-procedure report_sub.

If the user chooses the Quarterly Report item, Maplnfo Professional calls the sub-procedure
report_sub_q. These sub-procedures (report_sub and report_sub_q) must appear elsewhere within
the same MapBasic application.

You also can create custom menu items that invoke standard Mapinfo Professional commands, rather
than calling MapBasic sub-procedures. The definitions file menu.def contains a list of definitions of
menu codes (for example, M_FILE_NEW and M_EDIT_UNDO). Each definition in that file corresponds
to one of the standard MaplInfo Professional menu commands (for example, M_EDIT_UNDO
corresponds to the Edit menu’s Undo command). If a menu item’s Calling clause specifies one of the
menu codes from menu.def, and the user chooses that menu item, Maplnfo Professional invokes the
appropriate Maplnfo Professional command.

For example, the following statement defines a “Color Coded Maps” menu item. If the user chooses
Color Coded Maps, Maplnfo Professional runs the command code M_MAP_THEMATIC. In other
words, if the user chooses the menu item, Maplinfo Professional displays the Create Thematic Map
dialog, just as if the user had chosen the Map > Create Thematic Map command.

Alter Menu ”“Query” Add
"Color Coded Maps” Calling M _MAP_ THEMATIC

Removing Items From A Menu

An application can remove individual menu items. The following statement removes the Delete Table
item from Maplinfo Professional’s Table > Maintenance menu. Note that the identifier
M_TABLE_DELETE is a code defined in the menu definitions file, menu.def.

Alter Menu "Maintenance” Remove M_TABLE DELETE

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 112 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

If you want to remove several items from a menu, there are two techniques you can use: you can issue
an Alter Menu ... Remove statement which lists all the items you wish to remove; or you can issue a
Create Menu ... statement which redefines the menu entirely, including only the items you want.

For example, the following statement creates a simplified version of the Map menu that includes only
three items (Layer Control, Previous View, and Options):

Create Menu ”"Map” As
"Layer Control” Calling M MAP LAYER CONTROL,
"Previous View” Calling M _MAP_ PREVIOUS,
"Options” Calling M_MAP_OPTIONS

Creating A New Menu

To create an all-new menu, use the Create Menu statement. For example, the sample application,
TextBox, issues the following Create Menu statement:

Create Menu "“TextBox” As

"&Create Text Boxes...” Calling create_ sub,
"Close TextBox” Calling Bye,
"About TextBox...” Calling About

The Create Menu statement creates a new “TextBox” menu. However, the act of creating a menu does
not cause the menu to appear automatically. To make the new menu become visible, you must take an
additional step.

You could make the TextBox menu visible by adding it to the menu bar, using the Alter Menu Bar
statement:

Alter Menu Bar Add "TextBox”

The Alter Menu Bar Add statement adds the menu to the right end of the menu bar. The menu
produced would look like this:

Create Text Boxes.
Close TextBox
About TextBox...

In practice, adding menus onto the menu bar is sometimes problematic. The amount of space on the
menu bar is limited, and every time you add a menu to the menu bar, you fill some of the remaining
space. Therefore, for the sake of conserving space on the menu bar, the TextBox application uses a
different technique for displaying its menu: instead of adding its menu directly onto the menu bar, the
TextBox application uses an Alter Menu statement to add its menu as a hierarchical sub-menu,
located on the Tools menu.
Alter Menu ”"Tools” Add

(-,

"TextBox” As "TextBox”
As a result of this statement, the TextBox menu appears as a hierarchical menu located on the Tools
menu. The resulting Tools menu looks like this:

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 113 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Tools

Run MapBasic Program... Ctrl+U
Hide MapB azic Window

Croate Test Bores..

Cloze TextBox
About TextBox...

Sample programs that are provided with MapInfo Professional, such as ScaleBar and OverView, follow
the same convention (placing their menu items on hierarchical menus located off of the Tools menu).
Thus, if you run the TextBox application, the ScaleBar application, and the OverView application, all
three applications add their commands to the Tools menu.

If each of the sample programs (ScaleBar, etc.) added a menu directly onto the menu bar, the menu
bar would quickly become over-crowded. Stacking hierarchical menus onto the Tools menu (or any
other menu) is one way of conserving space on the menu bar. Note, however, that some users find
hierarchical menus significantly harder to use.

How you design and organize your menus will depend on the nature of your application. Depending on
your application, you may need to add one, two, or even several menus to the menu bar.

Regardless of whether you attach your menus to the menu bar or to other menus, Maplinfo
Professional is limited to 96 menu definitions. In other words, there can never be more than 96 menus
defined at one time, including Mapinfo Professional’s standard menus. This limitation applies even
when you are not displaying all of the menus.

Altering A Menu ltem
The MapBasic language lets you perform the following operations on individual menu items:

* You can disable (gray out) a menu item, so that the user cannot choose that menu item.
¢ You can enable a menu item that was formerly disabled.

* You can check a menu item (i.e., add a check-mark to the menu item); however, a menu item
must be defined as “checkable” when it is created. To define a menu item as checkable, insert
an exclamation point as the first character of the menu item name. For more information, see
Create Menu in the MapBasic Reference.

¢ You can un-check a menu item (i.e., remove the check-mark)
* You can rename the menu item, so that the text that appears on the menu changes.
To alter a menu item, use the Alter Menu Item statement. The Alter Menu Item statement includes

several optional clauses (Enable, Disable, Check, UnCheck, etc.); use whichever clauses apply to the
change you want to make.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 114 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

The sample program OverView demonstrates the process of creating, then altering, a custom menu.
The OverView application creates the following custom menu:

Create Menu ”OverView” As
"&Setup OverView” Calling OverView,
" (Suspend Tracking” Calling MenuToggler,
" (Pick Frame Style” Calling PickFrame,

" (_n

"Close Overview” Calling Bye,

" (_Il

"About Overview...” Calling About

The Pick Frame Style menu item is initially disabled. (Whenever the name of a menu item begins with
the “(” character, that menu item is automatically disabled when the menu first appears.)

When and if the user sets up an overview window, the OverView application enables the Pick Frame
Style menu item, using the following statement:

Alter Menu Item PickFrame Enable

If the user closes the overview window, the application once again disables the Pick Frame menu item,
by issuing the following statement:

Alter Menu Item PickFrame Disable

PickFrame is the name of a sub-procedure in overview.mb. Note that PickFrame appears in both the
Create Menu statement (in the Calling clause) and in the Alter Menu Item statements. When you
issue an Alter Menu Item statement, you must specify which menu item you want to alter. If you
specify the name of a procedure (for example, PickFrame), MaplInfo Professional modifies whatever
menu item calls that procedure.

Similarly, to enable the Suspend Tracking menu item, issue the following statement:

Alter Menu Item MenuToggler Enable

You also can use Alter Menu Item to change the name of a menu item. For example, the OverView
application has a menu item that is initially called Suspend Tracking. If the user chooses Suspend
Tracking, the application changes the menu item’s name to Resume Tracking by issuing the following
statement:

Alter Menu Item MenuToggler Text "“Resume Tracking”

Note that Maplnfo Professional enables and disables its own standard menu items automatically,
depending on the circumstances. For example, the Window > New Map Window command is only
enabled when and if a mappable table is open. Because Maplinfo Professional automatically alters its
own standard menu items, a MapBasic application should not attempt to enable or disable those menu
items.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 115 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Re-Defining The Menu Bar

To remove an entire menu from the menu bar, use the Alter Menu Bar statement. For example, the
following statement causes the Query menu to disappear:

Alter Menu Bar Remove ”“Query”

You also can use Alter Menu Bar to add menus to the menu bar. For example, the following statement
adds both the Map menu and the Browse menu to the menu bar. (By default, those two menus never
appear on the menu bar at the same time. The Map menu ordinarily appears only when a Map is the
active window, and the Browse menu ordinarily appears only when a Browser window is active.)

Alter Menu Bar Add ”“Map”, "Browse”

The Alter Menu Bar Add statement always adds menus to the right end of the menu bar. One minor
disadvantage of this behavior is the fact that menus can end up located to the right of the Help menu.
Most software packages arrange the menu bar so that the last two menu names are Window and
Help. Therefore, you may want to insert your custom menu to the left of the Window menu. The
following statements show how to insert a menu to the left of the Window menu:

Alter Menu Bar Remove ID 6, ID 7

Alter Menu Bar Add "Tools”, ID 6, ID 7
The first statement removes the Window menu (ID 6) and Help menu (ID 7) from the menu bar. The
second statement adds the Tools menu, the Window menu, and the Help menu to the menu bar. The
end result is that the Tools menu is placed to the left of the Window menu.

For complete control over the menu order, use the Create Menu Bar statement. For example, this
statement re-defines the menu bar to include the File, Edit, Map, Query, and Help menus (in that
order):

Create Menu Bar As ”"File”, ”"Edit”, "Map”, "Query”, "Help”

For a list of MapInfo Professional’s standard menu names (“File”, “Query” etc.) see Alter Menu in the
MapBasic Reference or online Help. To restore Maplnfo Professional’s standard menu definitions,
issue a Create Menu Bar As Default statement.

Specifying Language-Independent Menu References

Most of the preceding examples refer to menus by their names (for example, “File”). There is an
alternate syntax for referring to MaplInfo Professional’s standard menus: you can identify standard
menus by ID numbers. For example, in any menu-related statement where you might refer to the File
menu as “File”, you could instead refer to that menu as ID 1. Thus, the following statement removes
the Query menu (which has ID number 3) from the menu bar:

Alter Menu Bar Remove ID 3

If your application will be used in more than one country, you may want to identify menus by their ID
numbers, rather than by their names. When the Maplinfo Professional software is localized for non-
English speaking countries, the names of menus are changed. If your application tries to alter the “File”
menu, and you run your application on a non-English version of MaplInfo Professional, your application
may generate an error (because in a non-English version of Maplnfo Professional, “File” may not be
the name of the menu). For a listing of the ID numbers that correspond to Maplinfo Professional’s
standard menus, see Alter Menu in the MapBasic Reference or online Help.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 116 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Customizing MaplInfo Professional’s Shortcut Menus

Maplinfo Professional 4.0 provides shortcut menus. These menus appear if the user clicks the right
mouse button. To manipulate shortcut menus, use the same statements you would use to manipulate
conventional menus: Alter Menu, Alter Menu Item, and Create Menu.

Each shortcut menu has a unique name and ID number. For example, the shortcut menu that appears
when you right-click a Map window is called “MapperShortcut” and has an ID of 17. For a listing of the
names and ID numbers of the shortcut menus, see Alter Menu in the MapBasic Reference or online
Help.

To destroy a shortcut menu, use the Create Menu statement to re-define the menu, and specify the
control code “(-” as the new menu definition. For example:

Create Menu ”MapperShortcut” ID 17 As " (-"

Assigning One Handler Procedure To Multiple Menu Items

The Create Menu and Alter Menu statements provide an optional ID clause, which lets you assign a
unique ID number to each custom menu item you create. Menu item IDs are optional. However, if you
intend to have two or more menu items calling the same handler procedure, you will probably want to
assign a unique ID number to each of your custom menu items.

In situations where two or more menu items call the same handler procedure, the handler procedure
generally calls Commandinfo() to determine which item the user chose. For example, the following
statement creates two custom menu items that call the same handler:

Alter Menu ”“Query” Add
"Annual Report” ID 201 Calling report sub,
"Quarterly Report” ID 202 Calling report sub
Both menu items call the procedure report_sub. Because each menu item has a unique 1D, the handler
procedure can call Commandinfo() to detect which menu item the user chose, and act accordingly:

Sub report_sub
If CommandInfo(CMD INFO MENUITEM) = 201 Then

’

’ ... then the user chose Annual Report...

’

ElseIf CommandInfo(CMD_INFO_MENUITEM) = 202 Then

’

" ... then the user chose Quarterly Report...

’

End If
End Sub
Menu item IDs also give you more control when it comes to altering menu items. If an Alter Menu Item
statement identifies a menu item by the name of its handler procedure, MapBasic modifies all menu
items that call the same procedure. Thus, the following statement disables both of the custom menu
items defined above (which may not be the desired effect):

Alter Menu Item report sub Disable

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 117 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Depending on the nature of your application, you may want to modify only one of the menu items. The
following statement disables only the Annual Report menu item, but has no effect on any other menu
items:

Alter Menu Item ID 201 Disable

Menu item ID numbers can be any positive Integer.

Simulating Menu Selections

To activate a Maplnfo Professional command as if the user had chosen that menu item, use the Run
Menu Command statement. For example, the following statement displays MapInfo Professional’s
Open Table dialog, as if the user had chosen File > Open Table:

Run Menu Command M_FILE OPEN
The code M_FILE_OPEN is defined in menu.def.

Defining Shortcut Keys And Hot Keys

Shortcut keys are keystroke combinations that let the user access menus and menu items directly from
the keyboard, without using the mouse. Typically, a shortcut key appears as an underlined letter in the
name of the menu or menu item. For example, in Windows, the shortcut keystroke to activate the
Maplnfo Professional Eile menu is <Alt-F>, as indicated by the underlined letter, F. To assign a shortcut
key to a menu item, place an ampersand (&) directly before the character that you want to define as
the shortcut key.

The following program fragment shows how a MapBasic for Windows program defines the C key (in
Create Text Boxes) as a shortcut key. If this program runs on Maplnfo Professional for Macintosh, the
ampersand is ignored.

Create Menu "TextBox” As
"&Create Text Boxes...” Calling create sub,

Hot keys are keystroke combinations that let the user execute menu commands without activating the
menu. Unlike shortcut keys that let you traverse through the menu structure using the keyboard, hot
keys let you avoid the menu completely. The following program fragment adds the hot key combination
<Control-Z> to a custom menu item:

Hot keys are keystroke combinations that let the user execute menu commands without activating the
menu. The following program fragment adds the hot key combination <Command-Z> to a custom
menu item:

Alter Menu ”“Query” Add
"New Report” + Chr$(9) + ”"CTRL-Z/W"%122” Calling new_sub

The instruction + Chr$(9) tells MapBasic to insert a tab character. The tab character is used for
formatting, so that all of the menu’s hotkey descriptions appear aligned.

The text CTRL-Z appears on the menu, so that the user can see the menu item has a hot key.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 118 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

The instruction /w"%122 defines the hot key as <Control-Z>. The code /w"%122 is a hot key code
recognized by Maplnfo Professional: /w specifies that the code is for MapInfo Professional for
Windows, the caret (*) specifies that the user should hold down the Ctrl key, and the %122 specifies
the letter “z” (122 is the ASCII character code for z).

Alter Menu ”Query” Add
"New Report /Mz” Calling new_ sub
The instruction /Mz defines the hot key as Command-Z. /M specifies that the code is for Mapinfo
Professional for Macintosh, and z specifies the z key.

For a listing of codes that control menu hot keys, see Create Menu in the MapBasic Reference or
online Help.

Controlling Menus Through the Mapinfo Professional Menus File

The default menu structure of MaplInfo Professional is controlled by the Mapinfo Professional menus
file. If you want to customize Maplinfo Professional’s menu structure, you can do so by altering the
menus file.

With Maplnfo Professional for Windows, the menus file is called MAPINFOW.MNU. With Maplnfo
Professional for Macintosh, the menus file is called Mapinfo menus.

Since the menus file is a text file, you can view it in any text editor. If you examine the menus file, you
will see that it bears a strong resemblance to a MapBasic program. If you change the menu definitions
in the menus file, the menus will look different the next time you run Maplinfo Professional. In other
words, altering the menus file gives you a way of customizing the menu structure without using a
compiled MapBasic application.

WARNING: Before you make any changes to the menus file, make a backup of the file. If the menus
file is corrupted or destroyed, you will not be able to run Maplnfo Professional (unless you can restore
the menus file from a backup). If you corrupt the menus file, and you cannot restore the file from a
backup, you will need to re-install MapInfo Professional.

The menus file contains several Create Menu statements. These statements define Maplinfo
Professional’s standard menu definitions (File, Edit, etc.). If you wish to remove one or more menu
items from a menu, you can do so by removing appropriate lines from the appropriate Create Menu
statement.

For example, MapInfo Professional’s Table > Maintenance menu usually contains a Delete Table
command, as shown below.

Table Structure..

Baster » Delete Table. ..
Bename Table._.
Pack Table...

Make ODBC Table Mappable...
linlink ODBE Table.
Hefresh WIBLE Table. .

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 119 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

If you examine the menus file, you will see that the Maintenance menu is defined through a Create
Menu statement that looks like this:

Create Menu ”&Maintenance” As

"&Table Structure...” Calling 404,
"&Delete Table...” Calling 4009,
"&Rename Table...” Calling 410,
"&Pack Table...” Calling 403,

Because the Delete Table command is potentially dangerous, you might want to re-define the
Maintenance menu to eliminate Delete Table. To eliminate the Delete Table command from the menu,
remove the appropriate line (“&Delete Table...” Calling 409) from the menus file. After you make this
change, the Create Menu statement will look like this:

Create Menu ”&Maintenance” As

"&Table Structure...” Calling 404,
"&Rename Table...” Calling 410,
"&Pack Table...” Calling 403,

The next time you run Maplnfo Professional, the Table > Maintenance menu will appear without a
Delete Table item.

Table Structure...

Baster r Bename Table...
Pack Table...

Make ODBC Table Mappable...
lUnlink DDEE Table: .
Hefrezh WDBIE Tiable. .

Similarly, if you wish to remove entire menus from the MapInfo Professional menu bar, you can do so
by editing the Create Menu Bar statement that appears in the menus file.

If Mapinfo Professional is installed on a network, and you modify the menus file in the directory where
Maplinfo Professional is installed, the changes will apply to all MapInfo Professional users on the
network. In some circumstances, you may want to create different menu structures for different
network users. For example, you may want to eliminate the Delete Table command from the menu that
appears for most of your users, but you may want that command to remain available to your network
system administrator.

To assign an individual user a customized menu structure, place a customized version of the menus
file in that user’s “home” directory. For Windows users, the home directory is defined as the user’s
private Windows directory (i.e., the directory where WIN.INI resides).

To assign an individual user a customized menu structure, place a customized version of the menus
file in that user’s “home” directory/folder. For Macintosh users, the home directory is defined as the
location of the user’s System folder. The menus file can be placed directly in the System folder, or in
the Preferences folder within the System folder.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 120 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

When a user runs Maplnfo Professional, it checks to see if a copy of the menus file exists in the user’s
home directory. If a copy of the menus file is present in the user’s home directory, Maplnfo Professional
loads that set of menus. If there is no menus file in the user’s home directory, Mapinfo Professional
loads the menus file from the directory where it is installed.

Thus, if you want different users to see two different versions of the menu structure, create two
different versions of the menus file. Place the version that applies to most of your users in the directory
where Maplnfo Professional is installed. Place the version that applies only to individual users in the
home directories of the individual users.

Standard Dialog Boxes

Dialog boxes are an essential element of the user interface. MapBasic provides several different
statements and functions that let you create dialogs for your application.

Displaying a Message

Use the Note statement to display a simple dialog box with a message and an OK button.

Maplinfo

@ Operation completed.

Asking a Yes-or-No Question

Use the Ask() function to display a dialog with a prompt and two buttons. The two buttons usually say
OK and Cancel, but you can customize them to suit your application. If the user chooses the OK
button, the function returns a TRUE value, otherwise, the function returns FALSE.

Mapinfo

@ Are pou sure pou want o dizcard your edits?

Cancel

J

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 121 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Selecting a File

Call the FileOpenDlg() function to display a standard File Open dialog. If the user chooses a file, the
function returns the name of the chosen file. If the user cancels out of the dialog, the function returns
an empty string.

The FileOpenDIg() function produces a dialog that looks like this:

TER EElEE
[Seamless: @ Dc_stits.tab @; Dicwashs1.tab

@ Biketour tab @ Dc_tower.tab E?" Dowashs2 tab
E?; Dc_areas.tab @ Dc_water.tab E?; Reststop.tab
@ Dec_bdys.tab @ Dc_zips.tab E%’; Trairrt.bab

@ Dc_pts.tab @ Doobstrc.tab @" Trairrt2.tab
E;ﬁ Di_quad.tab @Dcwashs.tab

File name: | Open

Files of type: [Mapinfo (*tat)] [Cancel

Help

Pl

Preferned Wiew: I.&utomalic 'I

The FileSaveAsDIg() function displays a standard File Save As dialog, and returns the file name
entered by the user.

Indicating the Percent Complete

Use the ProgressBar statement to display a standard percent-complete dialog, containing a progress
bar and a Cancel button.

Status
Writing data...
1] 25 B0 7h 100

Displaying One Row From a Table

MaplInfo Professional does not provide a standard dialog that displays one row from a table. However,
you can use Maplinfo Professional’s Info window to display a row. Instructions on managing the Info
window (and other windows as well) appear later in this chapter.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 122 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

For more information about the statements and functions listed above, see the MapBasic Reference. If
none of the preceding statements meets your needs, use the Dialog statement to create a custom
dialog, as described in the following section.

Custom Dialog Boxes

The Dialog statement lets you create custom dialogs. When you issue a Dialog statement, MapInfo
Professional displays the dialog and lets the user interact with the dialog. When the user dismisses the
dialog (for example, by clicking the OK or Cancel button), MaplInfo Professional executes any
statements that follow the Dialog statement. After the Dialog statement, you can call the
Commandinfo() function to tell whether the user chose OK or Cancel.

Everything that can appear on a dialog is known as a control. For example, every OK button is a
control, and every Cancel button is also a control. To add controls to a dialog, include Control clauses
within the Dialog statement. For example, the following statement creates a dialog with four controls: a
label (known as a StaticText control); a box where the user can type (known as an EditText control); an
OK push-button (known as OKButton control) and a Cancel push-button (CancelButton control).

Dim s_searchfor As String

Dialog
Title ”Search”
Control StaticText
Title ”"Enter string to find:”
Control EditText
Into s_searchfor
Control OKButton
Control CancelButton
Control CancelButton
Control OKButton
If CommandInfo (CMD_INFO_DLG_OK) Then
' ... then the user clicked OK -- in which case,
" the String variable: s _searchfor will contain
' the value entered by the user.

’

End If
This Dialog statement produces the following dialog:

Search

Enter string ta find: I

| (] I Cancel |

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 123 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Sizes and Positions of Controls

If you want to change the size of a dialog control, you can include the optional Width and Height
clauses within the Control clause. If you want to change the position of a dialog control, you can
include the optional Position clause.

For example, you might not like the default placement of the buttons in the dialog shown above. To
control the button placement, you could add Position clauses, as shown below:

Dialog
Title “Search”
Control StaticText
Title ”"Enter string to find:”
Control EditText
Into s_searchfor

Control OKButton
Title ”"Search”

Position 30, 30

Control CancelButton
Position 90, 30

Control CancelButton
Position 80, 30

Control OKButton
Title ”Search”
Position 120, 30

Because two of the Control clauses include Position clauses, the dialog’s appearance changes:

Search

Enter string to find: I

Cancel |

Positions and sizes are stated in terms of dialog units, where each dialog unit represents one quarter
of a character’s width or one eighth of a character’s height. The upper-left corner of the dialog has the
position 0, 0. The following Position clause specifies a position in the dialog five characters in from the
left edge of the dialog, and two characters from the top edge of the dialog:

Position 20, 16

A horizontal position of 20 specifies a position five characters to the right, since each dialog unit
represents one fourth of the width of a character. A vertical position of 16 specifies a position two
characters down, since each dialog unit spans one eighth of the height of a character.

You can include a Position clause for every control in the dialog. You also can specify Width and
Height clauses to customize a control’s size.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 124 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Control Types

The previous examples contained four types of controls (StaticText, EditText, OKButton, and
CancelButton). The following illustration shows all of MapBasic’s dialog control types.

Map Franchise Locations |
StaticText Enter Map Title: INew Franchizes, "' 95 ——T—— EditText
GroupBox — | Level of Detal—— Shaow Franchizes &z
£~ Full Details
RadioGroup L—F Partial Details 1 Picker
(SymbolPicker)
Show Resulks For: Include Map Layers:
ListBox ———t2nd Qitr =] — MultiListBox

Ard Crtr |

Scope of Map:

PopupMenu —Igﬂunt_.r. vI W Include Legend ——— CheckBox

OKButton
Button ———— Reszet | Ear‘u:el:l—— CancelButton

StaticText is a non-interactive control that lets you include labels in the dialog box. For example:

Control StaticText
Title "Enter map title:”
Position 5, 10

An EditText control is a boxed area where the user can type. For example:

Control EditText
Value "New Franchises, FY 95”
Into s_title
ID 1
Position 65, 8 Width 90

A GroupBox control is a rectangle with a label at the upper left corner. Use GroupBoxes for visual
impact, to convey that other dialog controls are related. For example:

Control GroupBox
Title "Level of Detail”
Position 5, 30 Width 70 Height 40

A RadioGroup control is a set of “radio buttons” (i.e., a list of choices where MapBasic only allows the
user to select one of the buttons at a time). For example:

Control RadioGroup
Title ”"&Full Details;&Partial Details”
Value 2
Into i_details
ID 2
Position 12, 42 Width 60

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 125 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

There are four types of Picker controls: PenPicker, BrushPicker, FontPicker, and SymbolPicker.

Each Picker control lets the user select a graphical style (line, fill, font, or symbol). The illustration

shown above includes a SymbolPicker control, showing a star-shaped symbol. For example:
Control SymbolPicker

Position 95, 45
Into sym variable ID 3

A ListBox control is a scrollable list from which the user can select one item. MapBasic automatically

appends a vertical scroll bar to the right edge of the ListBox if there are too many list items to be
displayed at one time. For example:

Control ListBox
Title "First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr”

Value 4

Into i _quarter

ID 4

Position 5, 90 Width 65 Height 35

A MultiListBox is similar to a ListBox, except that the user can shift-click or control-click to select two
or more items from the list. For example:

Control MultiListBox

Title “Streets;Highways;Towns;Counties;States”
Value 3
ID 5

Position 95, 90 Width 65 Height 35

A PopupMenu appears as a text item with a down arrow at the right edge. As the user clicks on the
control, a menu pops up, allowing the user to make a selection. For example:

Control PopupMenu

Title “Town;County;Territory;Entire state”
Value 2

Into i scope

ID 6

Position 5, 140

A CheckBox is a label with a box. The user can check or clear the box by clicking on the control. For
example:

Control CheckBox
Title "Include &Legend”
Into 1_showlegend
ID 7
Position 95, 140

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 126 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Button controls are perhaps the most common type of control that you will use, since almost every
dialog box has at least one button. MapBasic provides special control types OKButton and
CancelButton for creating OK and Cancel buttons.

Control Button
Title ”&Reset”
Calling reset sub
Position 10, 165

Control OKButton
Position 65, 165
Calling ok sub

Control CancelButton
Position 120, 165
Each dialog should have no more than one OKButton or CancelButton control. Both controls are
optional. However, as a general rule, every dialog should have an OK and/or a Cancel button, so that
the user has a way of dismissing the dialog. If either control has a handler, MapBasic executes the
handler procedure and then resumes executing the statements that follow the Dialog statement.

Every type of control is described in detail in the MapBasic Reference and online Help. For example, to
read about ListBox controls, see Control Listbox.

Specifying a Control’s Initial Value

Most types of controls have an optional Value clause. This clause specifies how the control is set when
the dialog first appears. For example, if you want the fourth item in a ListBox control to be selected
when the dialog first appears, add a Value clause to the ListBox clause:

Value 4

If you omit the Value clause, Maplinfo Professional uses a default value. For example, CheckBox
controls are checked by default. For more information about setting a Value clause, see the
appropriate Control description (for example, Control CheckBox) in the MapBasic Reference.

Reading a Control’s Final Value

Most types of controls allow an optional Into clause. This clause associates a program variable with
the control, so that MapInfo Professional can store the dialog data in the variable. If you create a
control with an Into clause, and if the user terminates the dialog by clicking the OK button, Maplnfo
Professional stores the control’s final value in the variable.

The Into clause must name a local or global variable in your program. The variable that you specify
must be appropriate for the type of control. For example, with a CheckBox control, the variable must be
Logical (TRUE meaning checked, FALSE meaning clear). See the MapBasic Reference for more
information about the type of variable appropriate for each control.

Note: Maplnfo Professional only updates the Into variable(s) after the dialog terminates, and only if
the dialog terminates because the user clicked OK. If you need to read the value of a control
from within a dialog handler procedure, call the ReadControlValue() function.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 127 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Responding to User Actions by Calling a Handler Procedure

Most types of controls can have handlers. A handler is a sub-procedure that MapBasic calls
automatically when and if the user clicks that control. The optional Calling handler clause specifies a
control’s handler; handler must be the name of a sub-procedure that takes no parameters. When the
user clicks on a control that has a handler procedure, MapBasic calls the procedure. When the
procedure finishes, the user can continue interacting with a dialog (except in the case of OKButton and
CancelButton controls, which automatically dismiss the dialog).

Handler procedures allow your program to issue statements while the dialog is on the screen. For
example, you may want your dialog to contain a “Reset” button. If the user clicks on the Reset button,
your program will reset all controls in the dialog to their default values. To create such a dialog, you
would need to assign a handler procedure to the “Reset” Button control. Within the handler procedure,
you would issue Alter Control statements to reset the dialog’s controls.

A ListBox or MultiListBox control handler can be set up to respond one way to single-click events
while responding differently to double-click events. The handler procedure can call the
Commandinfo(CMD_INFO_DLG_DBL) function to determine whether the event was a single- or
double-click. For an example of this feature, see the Named Views sample program (nviews.mb). The
Named Views dialog presents a list of names; if the user double-clicks on a name in the list, the
handler procedure detects that there was a double-click event, and dismisses the dialog. In other
words, the user can double-click on the list, rather than single-clicking on the list and then clicking on
the OKButton.

If two or more controls specify the same procedure name in the Calling clause, the named procedure
acts as the handler for both of the controls. Within the handler procedure, call the TriggerControl()
function to determine the ID of the control that was used.

Most dialog controls can have handler procedures (only GroupBox, StaticText, and EditText controls
cannot have handlers). You also can specify a special handler procedure that is called once when the
dialog first appears. If your Dialog statement includes a Calling clause that is not part of a Control
clause, the Calling clause assigns a handler procedure to the dialog itself.

The Alter Control statement may only be issued from within a handler procedure. Use Alter Control
to disable, enable, show, hide, rename, or reset the current setting of a control. The Alter Control
statement can also set which EditText control has the focus (i.e., which control is active). For more
information, see Alter Control in the MapBasic Reference or online Help.

Enabled / Disabled Controls

When a control first appears, it is either enabled (clickable) or disabled (grayed out). By default, every
control is enabled. There are two ways to disable a dialog control:

* Include the optional Disable keyword within the Dialog statement’s Control clause. When the
dialog appears, the control is disabled.

¢ From within a handler procedure, issue an Alter Control statement to disable the control. If
you want the control to be disabled as soon as the dialog appears, assign a handler procedure
to the dialog itself, by including a Calling clause that is not within a Control clause. This
handler will be called once, when the dialog first appears. Within the handler, you can issue
Alter Control statements. This technique is more involved, but it is also more flexible. For

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 128 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

example, if you want a control to be disabled, but only under certain conditions, you can place
the Alter Control statement within an If...Then statement.

Note: If you are going to use an Alter Control statement to modify a dialog control, you should
assign an ID number to the control by including an ID clause in the Dialog statement. For an
example, see Alter Control in the MapBasic Reference or online Help.

Letting the User Choose From a List

The ListBox control presents a list of choices. There are two ways you can specify the list of items that
should appear in a ListBox control:

» Build a String expression that contains all of the items in the list, separated by semicolons. For
example:

Control ListBox
Title ”"First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr;Year in Review”

* Declare an array of String variables, and store each list item in one element of the array. In the
Control clause, specify the keywords From Variable. For example, if you have created a
String array called s_list, you could display the array in a ListBox control using this syntax:

Control ListBox
Title From Variable s list
You can use the From Variable syntax in all three of MapBasic’s list controls (ListBox, MultiListBox,
and PopupMenu).

Managing MultiListBox Controls

If your dialog contains a MultiListBox control, you must use a handler procedure to determine what list
item(s) the user selected from the list. In most cases, a dialog with a MultiListBox control contains an
OKButton control with a handler procedure. The OKButton’s handler procedure calls the
ReadControlValue() function within a loop. The first ReadControlValue() call returns the number of
the first selected list item; the next call returns the number of the next selected list item; etc. When
ReadControlValue() returns zero, the list of selected items has been exhausted. If
ReadControlValue() returns zero the first time you call it, none of the list items are selected.

Within a handler procedure, you can de-select all items in a MultiListBox control by issuing an Alter
Control statement, and assigning a value of zero to the control. To add a list item to the set of selected
items, issue an Alter Control statement with a positive, non-zero value. For example, to select the first
and second items in a MultiListBox control, you could issue the following statements:

Alter Control 1 Value 1

Alter Control 1 Value 2
Note that both the ReadControlValue() function and the Alter Control statement require a control ID.
To assign a control ID to a MultiListBox control, include the optional ID clause in the Control
MultilistBox clause.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 129 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Specifying Shortcut Keys for Controls

When a MapBasic application runs on Mapinfo Professional for Windows, the application dialogs can
assign shortcut keys to the various controls. A shortcut key is a convenience that lets the user activate
a dialog control using the keyboard instead of the mouse.

To specify a shortcut key for a control, include the ampersand character (&) in the control’s title
immediately before the character that is to be used as a shortcut key character. For example, the
following Control clause creates a Button control with R as the shortcut key:

Control Button
Title ”&Reset”
Calling reset_sub
Because an ampersand appears in the Button control’s title, the user is able to activate the Reset
button by pressing Alt-R. If you want to display an ampersand character in a control, use two
successive ampersand characters (&&).

You cannot specify a shortcut key for an EditText control. However, if you place a StaticText label to the
left of an EditText control, and you specify a shortcut key for the StaticText label, the user can set the
focus on the EditText control by pressing the shortcut key of the StaticText label.

Dialog shortcut key designations are ignored when a MapBasic application runs in any operating
environment other than Windows.

Modal vs. Modeless Dialog Boxes

The Dialog statement creates a modal dialog box. In other words, the user must dismiss the dialog box
(for example, by clicking OK or Cancel) before doing anything else with Maplnfo Professional.

Some dialog boxes are modeless, meaning that the dialog can remain on the screen while the user
performs other actions. For example, Maplnfo Professional’s Image Registration dialog box is
modeless. The Dialog statement cannot create modeless dialog boxes. If you want to create modeless
dialog boxes, you may need to develop an application in another programming environment, such as
Microsoft Visual Basic, and call that application from within your MapBasic program (for example, using
the Run Program statement).

Terminating a Dialog Box

After a MapBasic program issues a Dialog statement, it will continue to be displayed until one of four
things happens:

e The user clicks the dialog’s OKButton control (if the dialog has one).

e The user clicks the dialog’s CancelButton control (if the dialog has one).

e The user otherwise cancels the dialog (for example, by pressing the Escape key).

* The user clicks a control that has an associated handler procedure that issues a Dialog

Remove statement.

Ordinarily, a dialog terminates when the user clicks an OKButton or CancelButton control. There are
times when the user should be allowed to continue using a dialog after pressing OK or Cancel. For
example, in some dialogs if the user presses Cancel, the application asks the user to verify the
cancellation (Are you sure you want to lose your changes?). If the user’s response is No, the
application should resume using the original dialog.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 130 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

The Dialog Preserve statement lets you allow the user to continue using a dialog after the OKButton
or CancelButton is clicked. You can only issue a Dialog Preserve statement from within the handler
sub-procedure of either the OKButton or CancelButton control.

The Dialog Remove statement halts a dialog prematurely. When a control’s handler procedure issues
a Dialog Remove statement, the dialog halts immediately. Dialog Remove is only valid from within a
dialog control’'s handler procedure. Dialog Remove can be used, for instance, to terminate a dialog
when the user double-clicks a ListBox control. The Named Views sample program (NVIEWS.MB)
provides an example of allowing the user to double-click in a list.

Windows

A MapBasic application can open and manipulate any of MapInfo Professional’s standard window
types (Map windows, Browse windows, etc.).

To open a new document window, issue one of these statements: Map, Browse, Graph, Layout, or
Create Redistricter. Each document window displays data from a table, so you must have the proper
table(s) open before you open the window.

To open one of Maplnfo Professional’s other windows (for example, the Help window or the Statistics
window), use the Open Window statement.

Many window settings can be controlled through the Set Window statement. For example, you could
use the Set Window statement to set a window’s size or position. There are also other statements that
let you configure attributes of specific window types. For example, to control the order of layers in a
Map window, you would issue a Set Map statement. To control the display of a grid in a Browse
window, you would issue a Set Browse statement.

Each document window (Map, Browser, Layout, Graph, or Redistrict) has an Integer identifier, or
window ID. Various statements and functions require a window ID as a parameter. For example, if two
or more Map windows are open, and you want to issue a Set Map statement to modify the window, you
should specify a window ID so that MapInfo Professional knows which window to modify.

To obtain the window ID of the active window, call the FrontWindow() function. Note that when you
first open a window (for example, by issuing a Map statement), that new window is the active window.
For example, the OverView sample program issues a Map statement to open a Map window, and then
immediately calls the FrontWindow() function to record the ID of the new Map window. Subsequent
operations performed by the OverView application refer to the ID.

Note: A window ID is not a simple, ordinal number, such as 1, 2, etc. The number 1 (one) is not a
valid window ID. To obtain a window ID, you must call a function such as FrontWindow() or
WindowlID(). For example, to obtain the window ID of the first window that is open, call
WindowlID(1). To determine the number of open windows, call NumWindows().

The WindowInfo() function returns information about an open window. For example, if you want to

determine whether the active window is a Map window, you can call FrontWindow() to determine the

active window’s ID, and then call WindowlInfo() to determine the active window’s window type.

To close a window, issue a Close Window statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 131 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Specifying a Window’s Size and Position
There are two ways to control a window’s size and position:

* Include the optional Position, Width, and Height clauses in the statement that opens the
window. For example, the following Map statement not only opens a Map window, it also
specifies the window’s initial size and position:

Map From world

Position (2,1) Units ”in”
Height 3 Units ”in”
Width 4 Units ”in”

¢ Issue a Set Window statement to control a window’s size or position after the window is open.
Note that the Set Window statement requires an Integer window ID.

Map Windows

A Map window displays mappable objects from one or more tables. When opening a Map window, you
must specify the tables that you want to display; each table must already be open.

The following statement opens a Map window:

Map From world, worldcap, grid30

This example maps the objects from the World, Worldcap, and Grid30 tables.

To add layers to a Map window, issue an Add Map Layer statement. To remove map layers from a
Map window, issue a Remove Map Layer statement. If you want to temporarily hide a map layer, you
do not need to remove it from the map; instead, you can use the Set Map statement to set that layer’s
Display attribute to off.

The Set Map statement is a very powerful statement that can control many aspects of a Map window.
By issuing Set Map statements, your program can control map attributes that the user would control
through the Map > Layer Control and Map > Options commands. For more information, see Set Map in
the MapBasic Reference.

Use the Shade statement to create a thematic map (a map that uses color coding or other graphical
devices to display information about the data attached to the map). The Shade statement lets you
create the following of Maplinfo Professional’s styles of thematic maps: ranges, bar charts, pie charts,
graduated symbols, dot density, or individual values. When you create a thematic map, Mapinfo
Professional adds a thematic layer to the affected window. To modify a thematic map, use the Set
Shade statement.

As of version 5.0 use the Create Grid Statement to create an important new thematic type that enables
analysis unconstrained by pre-existing geographic boundaries. Surface themes provide a continuous
color visualization for point data sets that you previously looked at as a point thematic or graduated
symbol. An inverse distance weighted interpolator populates the surface values from your Maplinfo
Professional point table. This powerful new thematic can be used in many industries like telco, retail
analysis, insurance, traditional GIS areas, and many more. This new theme and grid format is
supported by open APIs for additional grid formats and interpolators which allows customization by our
developer community. Refer to the Create Grid statement in the MapBasic Reference. To modify a
surface thematic, use the Inflect clause of the Set Map statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 132 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

To change a Map window’s projection, you can issue a Set Map statement with a CoordSys clause.
Alternately, you can display a map in a specific projection by saving your table(s) in a specific
projection (using the Commit Table ... As statement).

To control whether scroll bars appear on a Map window, issue a Set Window statement.

Using Animation Layers to Speed Up Map Redraws

If the Add Map Layer statement includes the Animate keyword, the layer becomes a special layer
known as the animation layer. When an object in the animation layer is moved, the Map window
redraws very quickly, even if the map is very complex.

The animation layer is useful in realtime applications, where map features are updated frequently. For
example, you can develop a fleet-management application that represents each vehicle as a point
object. You can receive current vehicle coordinates by using GPS (Global Positioning Satellite)
technology, and then update the point objects to show the current vehicle locations on the map. In this
type of application, where map objects are constantly changing, the map redraws much more quickly if
the objects being updated are stored in the animation layer instead of a conventional layer.

The following example opens a table and makes the table an animation layer:

Open Table “vehicles” Interactive
Add Map Layer vehicles Animate

Animation layers have the following restrictions:

* When you add an animation layer, it does not appear in the Layer Control dialog box.

* The user cannot interact with the animation layer by clicking in the Map window. For example,
the user cannot use the Info tool to click on a point in the animation layer.

e Each Map window can have only one animation layer. The animation layer automatically
becomes the map’s top layer. If you attempt to add an animation layer to a Map window that
already has an animation layer, the new animation layer replaces the old one.

e Workspace files do not preserve information about animation layers.
* To terminate the animation layer processing, issue a Remove Map Layer Animate statement.

Sample Program

To see a demonstration of animation layers, run the sample program ANIMATOR.MBX.

Performance Tips for Animation Layers

The purpose of the animation layer feature is to allow fast updates to small sections of the Map
window. To get the best redraw speed possible:

¢ Avoid displaying the Map window in a Layout window. If the Map window that has the
animation layer is displayed in a Layout window, screen updates may not be as fast.

* Make sure that the layer you are using as an animation layer is only displayed once in the Map
window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 133 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

For example, suppose you are working with two tables: Roads (a table containing a street map), and
Trucks (a table containing point objects, each of which represents a delivery truck). Suppose your Map
window already contains both layers. If you want to turn the Trucks layer into an animation layer, you
need to issue the following statement:

Add Map Layer Trucks Animate

However, you now have a problem: the Trucks layer now appears in the Map window twice-once as a
conventional map layer, and once as an animation layer. Because the Trucks layer is still being
displayed as a conventional layer, MapInfo Professional will not be able to perform fast screen
updates. In other words, updates to the Map window will redraw as slowly as before, which defeats the
purpose of the animation layer feature.

The following example demonstrates how to handle this situation. Before you add the Trucks layer as
an animation layer, turn off the display of the “conventional” Trucks layer:

'temporarily prevent screen updates
Set Event Processing Off

"set the original Trucks layer so it won’t display
Set Map Layer “Trucks” Display Off

"add the Trucks layer to the map, as an animation layer
Add Map Layer Trucks Animate

' allow screen updates again
Set Event Processing On

' At this point, there are two Trucks layers in the

' Map window. However, the ”conventional” Trucks layer

' is not displayed, so it will not slow down the display
" of the "animated” Trucks layer.

Browser Windows

A Browser window displays columns of table data. The following statement opens a simple Browser
window that displays all the columns in the World table:

Browse * From world

The asterisk specifies that every column in the table should appear in the Browser. To open a Browser
window that displays only some of the columns, replace the asterisk with a list of column expressions.
For example, the following statement opens a Browser window that shows only two columns:

Browse country, capital From world

The Browse statement can specify column expressions that calculate derived values. For example,
the following statement uses the Format$() function to create a formatted version of the World table’s
Population column. As a result, the second column in the Browser will contain commas to make the
population statistics more readable.

Browse country, Format$ (Population, ”,#”) From world

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 134 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

If the Browse statement specifies a simple column name (for example, country), the Browser window
allows the user to edit the column values (unless the table is read-only). However, if the Browse
statement specifies an expression that is more complex than just a column name, the corresponding
column in the Browser window is read-only. Thus, if you want to create read-only columns in a Browser
window, you can do so by browsing an expression, rather than a simple column name.

The expressions that you specify in the Browse statement appear as column headers across the top
of the Browser window. The following statement shows how you can override the default column
expression with an alias column header:

Browse country, Format$ (Population, ”,#”) "Pop” From world

Because the String expression “Pop” appears after the column expression, “Pop” will be the column
header that appears on the Browser window.

You can also set the initial default position of the Browser window. The following example positions the
initial display so that the second column of the fifth row is in the upper left position of the Browser
display:

Browse * From world Row 5 Column 2

Graph Windows

A Graph window contains a graph containing labels and values computed from a table. This sample
displays a graph using one column for labels and another for data:

Graph country, population From world

The first item after the keyword Graph is the name of the column that provides labels for the data.
Each following item is an expression that provides the graph with data. The example above is a simple
expression in which the data is one column of the table. You can use any valid numeric expression.

Layout Windows
A Layout window represents a page layout. To open a Layout window, use the Layout statement.

Most Layout windows contain one or more frame objects. To create a frame object, issue a Create
Frame statement. Layout windows also can contain any type of Map object. For example, to place a
title on the page layout, create a text object by issuing a Create Text statement.

A Layout window can be treated as a table. For example, you can add objects to a Layout by issuing
an Insert statement that refers to a table name such as “Layout1.” However, strictly speaking, the
objects that appear on a layout are not saved in table format (although they are saved in workspace
files). For more information on accessing a Layout window as if it were a table, see Chapter 8:
Working With Tables.

Objects stored on Layout windows must use a Layout coordinate system, which defines object
coordinates in terms of “paper” units such as inches or millimeters. For more information on Layout
coordinates, see Chapter 10: Graphical Objects.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 135 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Redistrict Windows

Use the Create Redistricter statement to begin a redistricting session. The Create Redistricter
statement lets your program control all redistricting options that the user might configure through the
Window > New Redistrict Window dialog.

Once a redistricting session has begun, you can control the Districts Browser by issuing Set
Redistricter statements. To perform actions from the Redistrict menu, use the Run Menu Command
statement.

For example, to assign objects to a district (as if the user had chosen Redistrict > Assign Selected
Objects), issue the following statement:

Run Menu Command M_REDISTRICT_ ASSIGN

To end a redistricting session, close the Districts Browser by issuing a Close Window statement. Note
that values in the base table change as objects are re-assigned from district to district. After a
redistricting session, you must save the base table if you want to retain the map objects’ final district
assignments. To save a table, issue a Commit statement.

For more information about redistricting, see the Maplnfo Professional documentation.

Message Window

You can use MapBasic’s Print statement to print text to the Message window. For example, the
following statement prints a message to the Message window:

Print ”Dispatcher is now on line.”

Customizing the Info Window

The Info window displays a row from a table. The user can edit a row by typing into the Info window. To
control and customize the Info window, use the Set Window statement. The following picture shows a
customized Info window:

Country Data

Country: |Afghanistan
Capital: Kabul
Inflation: 92

ililil World_Query

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 136 MB_UG.pdf

User Guide

Chapter 7: Creating the User Interface

The following program creates the customized Info window shown above.

Include "mapbasic.def”
Open Table "World” Interactive

Select

Country, Capital, Inflat Rate + 0 ”"Inflation”
From World
Into World Query

Set Window Info

Title ”“Country Data”

Table World Query Rec 1

Font MakeFont (”“Arial”, 1, 10, BLACK, WHITE)
Width 3 Units ”in” Height 1.2 Units ”in”
Position (2.5, 1.5) Units ”"in”

Front

Note the following points about this example:

Ordinarily, the Info window’s title bar reads “Info Tool.” This program uses the Title clause to
make the title bar read “Country Data.”

To specify which row of data appears in the window, use the Set Window statement’s Table ...
Rec clause. The example above displays record number 1 from the World_Query table.
(World_Query is a temporary table produced by the Select statement.)

The Info window displays a box for each field in the record; the scroll-bar at the right edge of
the window allows the user to scroll down through the fields. To limit the number of fields
displayed, the example above uses a Select statement to build a temporary query table,
World_Query. The World_Query table has only three columns; as a result, the Info window
displays only three fields.

To make some, but not all, of the fields in the Info window read-only:

Use a Select statement to produce a temporary query table.

Set up the Select statement so that it calculates expressions instead of simple column values.
The Select statement shown above specifies the expression “Inflat_Rate + 0” for the third
column value. (The “Inflation” string that follows the expression is an alias for the expression.)

Select

Country, Capital, Inflat Rate + 0 ”"Inflation”

In the Set Window Info statement, use the Table... Rec clause to specify which record is
displayed. Specify a row from the query table, as in the example above. When a column in the
query table is defined with an expression, the corresponding box in the Info window is read-
only. (In the example above, the Inflation field is read-only.)

When the user types a new value into the Info window, Mapinfo Professional automatically
stores the new value in the temporary query table, and in the base table on which the query
was based. You do not need to issue additional statements to apply the edit to the table.
(However, you do need to issue a Commit statement if you want to save the user’s edits.)

To make all fields in the Info window read-only, issue the following statement:

Set Window Info ReadOnly

Note:

All of the fields in the Info window are read-only when you display a table that is a join (such as
a Streetinfo table) or a query table that uses the Group By clause to calculate aggregate
values.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 137 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

ButtonPads (Toolbars)

A ButtonPad is a resizable, floating window which contains one or more buttons. The user can initiate
various types of actions by choosing buttons from a ButtonPad.

The terms “ButtonPad” and “toolbar” mean exactly the same thing. The Maplnfo Professional user
interface refers to toolbars. For example, Maplinfo Professional’s Options menu has a Toolbars
command, which lets the Maplnfo Professional user show or hide toolbars. Meanwhile, the MapBasic
language syntax refers to toolbars as ButtonPads. For example, use the Alter ButtonPad statement to
show or hide a toolbar.

Maplnfo Professional provides several standard ButtonPads, such as the Main ButtonPad. A
MapBasic program can add custom buttons to existing ButtonPads, or create entirely new ButtonPads.

What Happens When The User Chooses A Button?

Like menu items, custom buttons have handler procedures. When a user works with a custom button,
MapBasic automatically calls that button’s handler procedure. Thus, if you want MapBasic to display a
custom dialog each time the user clicks on a button, create a sub procedure which displays the dialog,
and make that procedure the handler for the custom button.

A MapBasic program can create three different types of buttons: ToolButtons, ToggleButtons, and
PushButtons. The button type dictates the conditions under which MapBasic calls that button’s handler.

¢ PushButton: When the user clicks on a PushButton, the button springs back up, and
MapBasic calls the PushButton’s handler procedure.
The Layer Control button is an example of a PushButton. Clicking on the Layer Control button
has an immediate effect (a dialog displays), but there is no lasting change to the status of the
button.

* ToggleButton: When the user clicks on a ToggleButton, the button toggles between being
checked (pushed in) and being unchecked (not pushed in). MapBasic calls the button’s
handler procedure each time the user clicks on the ToggleButton.

The Show/Hide Legend Window button is an example of a ToggleButton. Clicking on the
button has an immediate effect: showing or hiding the Legend Window. Furthermore, there is a
lasting change to the button’s status: the button toggles in or out.

¢ ToolButton: When the user clicks on a ToolButton, that button becomes the active tool, and
remains the active tool until the user chooses a different tool. MapBasic calls the button’s

handler procedure if the user clicks in a Map, Browse, or Layout window while the custom
button is the selected tool.

The Magnify tool is an example of a ToolButton. Choosing the tool does not produce any
immediate effects; however, choosing the tool and then clicking in a Map window does have an
effect.

MapBasic Statements Related To ButtonPads

The following statements and functions let you create and control custom buttons and ButtonPads:

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 138 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Create ButtonPad

This statement creates a new ButtonPad.

Alter ButtonPad

After creating a custom ButtonPad, your program can alter various attributes of the ButtonPad. The
Alter ButtonPad statement lets you reposition, show, or hide a ButtonPad, or add or remove buttons
to or from a ButtonPad.

The Alter ButtonPad statement lets you modify any ButtonPad, even standard pads, such as Main. If
your application needs only one or two custom buttons, you may want to add those buttons to the
standard Main ButtonPad, instead of creating a new ButtonPad.

Alter Button

This statement modifies the status of a single button. Use the Alter Button statement to disable (de-
activate) or enable (activate) a button, or to change which button is currently selected.

Commandinfo()

Use the CommandIinfo() function within a button’s handler procedure to query information about how
the user has used the custom button. For example, if the user chooses a ToolButton and then clicks in
a Map window, the Commandinfo() function can read the x- and y-coordinates of the location where
the user clicked.

If you create two or more buttons that call the same handler procedure, that procedure can call
Commandinfo(CMD_INFO_TOOLBTN) to determine which button is in use.

Thus, within a button’s handler procedure, you might call CommandIinfo() several times: Once to
determine which button the user has chosen; once to determine the x-coordinate of the location where
the user clicked; once to determine the y-coordinate; and once to determine whether or not the user
held down the shift key while clicking.

ToolHandler

ToolHandler, a special procedure name, gives you an easy way to add one button to the Main
ButtonPad. If your MapBasic program includes a procedure named ToolHandler, MapBasic
automatically adds one ToolButton to the Main ButtonPad. Then, if the user chooses the ToolButton,
MapBasic automatically calls the ToolHandler procedure each time the user clicks in a Map, Browse, or
Layout window.

A MapBasic program cannot customize the button icon or draw mode associated with the ToolHandler
procedure; the icon and cursor always use a simple + shape. If you need to specify a custom icon or
cursor, use the Create ButtonPad or Alter ButtonPad statement instead of a ToolHandler procedure.

If the user runs multiple MapBasic applications at one time, and each application has its own
ToolHandler, each application adds its own button to the Main ButtonPad.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 139 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Creating A Custom PushButton

The following program creates a custom ButtonPad containing a PushButton. The button_prompt
procedure is the button’s handler; therefore, whenever the user clicks the custom PushButton,
MapBasic automatically calls the button_prompt procedure.

Include ”icons.def”
Declare Sub Main
Declare Sub button prompt

Sub Main
Create ButtonPad ”Custom” As
PushButton
Icon MI_ICON_ZOOM_ QUESTION
Calling button prompt
HelpMsg ”Displays the query dialog\nQuery”
Show
End Sub

Sub button prompt
" This procedure called automatically when
' the user chooses the button.

End Sub
The Main procedure contains only one statement: Create ButtonPad. This statement creates a
custom ButtonPad, called “Custom,” and creates one custom button on the ButtonPad.

The PushButton keyword tells MapBasic to make the custom button a PushButton.

The Icon clause tells MapBasic which icon to display on the custom button. The identifier,
MI_ICON_ZOOM_QUESTION, is defined in the file icons.def. To see a list of standard MapInfo
Professional icon identifiers, examine icons.def.

The Calling clause tells MapBasic to call the button_prompt procedure whenever the user clicks on
the custom button.

The HelpMsg clause defines both a status bar help message and a ToolTip help message for the
button. Help messages are discussed later in this chapter.

Adding A Button To The Main ButtonPad

The preceding example used the Create ButtonPad statement to create an all-new ButtonPad.
MapBasic can also add custom buttons to MaplInfo Professional’s default ButtonPads, such as Main.
To add a button to an existing ButtonPad, use the Alter ButtonPad statement, instead of the Create
ButtonPad statement, as shown in the following example:

Alter ButtonPad “Main”
Add Separator
Add PushButton
Icon MI_TICON_ZOOM_ QUESTION
Calling button prompt
HelpMsg "Displays the query dialog\nQuery”
Show

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 140 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

The Add PushButton clause adds a custom button to the Main ButtonPad, while the Add Separator
clause places an empty space between the new button and the previous button. The Add Separator
clause is optional; use it when you want to separate buttons into distinct groups.

Maplnfo Professional includes a special ButtonPad, called Tools, so that MapBasic utility programs will
have a place where they can add custom buttons. For example, the ScaleBar utility adds its button to
the Tools ButtonPad.

Creating A Custom ToolButton

The preceding examples created custom PushButtons. MapBasic also can create custom ToolButtons,
which act like MapInfo Professional tools, such as the Magnify and Line tools. If a program creates a
custom ToolButton, the user can choose that tool, then use that tool to click, and sometimes drag, on a
Map, Browse, or Layout window.

The following example creates a custom ToolButton. After selecting the tool, the user can click and
drag in a Map window. As the user drags the mouse, MaplInfo Professional displays a dynamically-
changing line connecting the current cursor position to the location where the user clicked.

Include "icons.def”

Include "mapbasic.def”
Declare Sub Main

Declare Sub draw _via button

Sub Main
Create ButtonPad ”Custom” As
ToolButton
Icon MI_ICON_LINE
DrawMode DM_CUSTOM_ LINE
Cursor MI_CURSOR_CROSSHAIR
Calling draw via button
HelpMsg ”“Draws a line on a Map window\nDraw Line”
Show
End Sub
Sub draw_via_button
Dim x1, y1,x2, y2 As Float
If WindowInfo (FrontWindow(),WIN INFO TYPE) <> WIN MAPPER Then
Note ”This tool may only be used on a Map window. Sorry!”
Exit Sub
End If

' Determine map location where user clicked:

x1 = CommandInfo (CMD INFO X)
yl = CommandInfo (CMD INFO Y)
X2 =

(
CommandInfo (CMD_ INFO_ X2)
y2 = CommandInfo (CMD_ INFO Y2)

' Here, you could create objects based on x1, yl, x2, and y2.

End Sub
In this example, the Create ButtonPad statement includes the ToolButton keyword instead of the
PushButton keyword. This tells MapBasic to make the custom button act like a drawing tool.

The button definition includes a DrawMode clause, which tells MapBasic whether the user can drag
after clicking with the tool. The example above uses the DM_CUSTOM_LINE drawing mode; therefore,
the user is able to click and drag with the custom tool, just as you can click and drag when using

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 141 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

MaplInfo Professional’s standard Line tool. When a tool uses the DM_CUSTOM_POINT mode, the
user cannot drag after clicking. For a listing of all available drawing modes, see Alter ButtonPad in the
MapBasic Reference or online Help.

The DrawMode also controls what the user sees while dragging. With the DM_CUSTOM_LINE mode,
MapBasic draws a line between the cursor location and the point where the user first clicked. With the
DM_CUSTOM_RECT mode, MapBasic draws a rectangular marquee while the user drags the mouse.
Regardless of which DrawMode is used with a ToolButton, MapInfo Professional calls the button’s
handler procedure after the user clicks and releases the mouse button. The handler procedure can call
Commandinfo() to determine where the user clicked. Note: If the user cancels the operation by
pressing the Esc key, MaplInfo Professional does not call the handler procedure.

Choosing Icons for Custom Buttons

When you define a custom button, you control the icon that appears on the button. To specify which
icon you want to use, use the lcon clause.

The keyword Icon is followed by a code from ICONS.DEF. For example, the following statement
defines a custom button that uses the icon for Mapinfo Professional’s Info button. The code
MI_ICON_INFO is defined in ICONS.DEF.

Alter ButtonPad “Main”
Add Separator
Add PushButton
Icon MI_ICON_INFO
Calling procedure name

Note: Maplnfo Professional 4.0 provides many built-in icons, most of which are not used in Mapinfo
Professional’s standard user interface. To see a demonstration of the built-in icons, run the
sample program lcon Sampler (ICONDEMO.MBX) and then choose an item from the Icon
Sampler menu. To see the code for a particular icon, position the mouse over that icon.

The button’s ToolTip shows you the icon code. You also can copy an icon’s code to the clipboard:

1. Run the Icon Sampler application ICONDEMO.MBX).
2. Choose an item from the Icon Sampler menu. A custom ButtonPad appears.

ﬁ@ﬁﬂ&@!@i!ﬁ@iaagﬁl
Sk |

AR E R ==

3. Click on the button whose icon you want to use. A dialog box appears.

lcon ID E

EEUECU) (COM TRANSPORT 27

ID: |32|:|

4. Press Ctrl-C (the Windows shortcut for the Copy command).
5. Click OK to dismiss the dialog box.
6. Switch to MapBasic. Press Ctrl-V (the shortcut for Paste) to paste the code into your program.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 142 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Selecting Objects by Clicking With a ToolButton

If the user chooses a custom ToolButton and then clicks on a map object, the object is not selected;
instead, MapInfo Professional calls the custom ToolButton’s handler procedure. If you need to select
the object on which the user clicked, issue a Select statement from within the handler procedure.

The following handler procedure selects the town boundary region where the user clicked. To
determine the coordinates where the user clicked, call CommandIinfo(). Then, to select objects at that
location, issue a Select statement with a Where clause, and specify a geographic operator such as
Contains. The following example selects all the town regions that contain the location where the user
clicked.

Sub t click handle
Dim fx, fy As Float

fx = CommandInfo (CMD INFO X)
fy CommandInfo (CMD_INFO_Y)
Select * From towns
Where obj Contains CreatePoint (fx, fy)

End Sub

Note: Instead of using a Select statement, you could call the SearchPoint() or SearchRect()
function to perform a search, and then call Searchlinfo() to process the search results. For an
example of this technique, see Searchinfo() in the MapBasic Reference or online Help.

Another approach would be to define a procedure called SelChangedHandler. If the user is running

an application that contains a SelChangedHandler procedure, MapInfo Professional automatically

calls that procedure every time the selection changes. The user could select objects by pointing and
clicking with Maplnfo Professional’s standard Select tool (the arrow-shaped icon at the upper left
corner of Maplnfo Professional’s Main ButtonPad), and your application could respond by issuing
statements within the SelChangedHandler procedure.

Including Standard Buttons in Custom ButtonPads

You can include any of MaplInfo Professional’s standard buttons (such as the Select button) on custom
ButtonPads. For example, the following statement creates a custom ButtonPad containing two buttons:
The standard MaplInfo Professional Select button, and a custom button.

Create ButtonPad ”"ToolBox” As
'’ Here is the standard Select button...
ToolButton
Icon MI_ICON ARROW
Calling M_TOOLS_SELECTOR
HelpMsg ”Select objects for editing\nSelect”

' Here 1is a custom ToolButton...
ToolButton
Icon MI_ICON_LINE
DrawMode DM CUSTOM LINE
Calling sub procedure name
HelpMsg “Draw New Delivery Route\nNew Route”

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 143 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

The first button’s Calling clause specifies M_TOOLS_SELECTOR, which is a numeric code defined in
MENU.DEF. This code represents Maplnfo Professional’s Select button. Every standard Mapinfo
Professional button has a corresponding code in MENU.DEF. Because the second button is a custom
button, its Calling clause specifies the name of a procedure, rather than a numeric code.

Note that the custom button includes a DrawMode clause, but the Select button does not. When you
place a standard button on a custom pad, you should omit the DrawMode clause, because each of
Maplnfo Professional’s standard buttons already has a pre-defined draw mode. You should only
specify a DrawMode clause when creating a custom ToolButton.

CAUTION: Caution: ToolButtons and ToggleButtons are not interchangeable. You cannot
convert one type of button to another type merely by replacing the ToolButton
keyword with the ToggleButton keyword (or vice versa). ToolButtons return x/y
coordinates in response to the user clicking on a window. ToggleButtons, however,
do not return coordinates, and they respond as soon as the user clicks on the
button.

If you include standard Maplinfo Professional buttons in your custom ButtonPads, make sure that you
do not accidentally change a ToolButton to a ToggleButton. To see how Maplinfo Professional’s
standard buttons are defined, view the Maplinfo Professional menus file, MAPINFOW.MNU. (On the
Macintosh, this file is called Maplnfo Professional Menus.) The menus file contains the Create
ButtonPad statements that define Mapinfo Professional’s ButtonPads.

Note: You can copy button definitions out of MAPINFOW.MNU and paste them into your programs.

Assigning Help Messages to Buttons

Your users may not understand the purpose of a toolbar button just by looking at its icon. Therefore,
MapBasic lets you create two types of on-screen help messages to assist your users:

e Status bar help. Used to show a brief description of the button, this type of help message
appears on the Maplinfo Professional status bar (assuming that the status bar is currently
visible).

* ToolTip help. Used to show the name of the button, this type of help message appears next to
the mouse cursor.

In earlier versions of MaplInfo Professional, status bar help only appeared when the user clicked on a
button. In version 4.0 and later, both the status bar help and ToolTip help appear when the user leaves
the mouse cursor positioned over a toolbar button.

Both types of help messages are defined through the HelpMsg clause, in the Create ButtonPad and
Alter ButtonPad statements. Within the HelpMsg clause, you specify one string that contains the
status bar help message, followed by the letters \n, followed by the ToolTip message.

For example:

Create ButtonPad ”Custom” As
PushButton
Icon MI_ICON_ZOOM_QUESTION
Calling generate_report
HelpMsg ”“This button generates reports\nGenerate Report”
Show

In this example, the custom button’s status bar help message is “This button generates reports” and its
ToolTip message is “Generate Report.” To show or hide the status bar, use the StatusBar statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 144 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Docking a ButtonPad to the Top of the Screen

Use the Alter ButtonPad statement to attach a toolbar to the top edge of the screen. (This is
sometimes known as “docking” the toolbar.) For example, the following statement docks the Main
toolbar:

Alter ButtonPad “Main” Fixed

The keyword Fixed specifies that the pad should be docked to the top of the screen. To change a
toolbar from docked to floating, specify Float instead of Fixed. The Fixed and Float keywords can also
be used within the Create ButtonPad statement, so that you can set the docked status at the moment
you create the toolbar.

To determine whether a toolbar is currently docked, call the ButtonPadInfo() function.

Other Features of ButtonPads
MapBasic also offers the following ButtonPad-related features:

* Enabled/Disabled Buttons. A MapBasic program can disable or enable custom buttons as
needed. For details, see the MapBasic Reference, Alter ButtonPad.

¢ Custom Button Icons. You can use a resource editor to create custom icons, and use those
custom icons on MapBasic ButtonPads.

Custom Draw Cursors. The cursor is the shape that moves as you move the mouse. By
default, all custom MapBasic buttons use a simple cursor, shaped like a pointer. However, you
can use a resource editor to create custom cursors.

The MapBasic development environment does not include a resource editor. However,
MapBasic programs can incorporate bitmaps and cursors created using other resource
editors. For more information about creating custom icons and cursors, see Chapter 12:
Integrated Mapping.

Integrating Your Application Into Mapinfo Professional

The preceding sections have discussed how a MapBasic application can customize the user interface
by creating custom menus, dialogs, windows and ButtonPads. Once you have completed your
application, however, one issue will remain: what steps does the user have to take to run your
application, so that your customized user-interface will take effect?

Any Maplinfo Professional user can run a MapBasic application by choosing Tools > Run MapBasic
Program. However, you may want to set up your application so that it runs automatically, instead of
forcing your users to choose File > Run MapBasic Program every time they run Mapinfo Professional.
If you are creating what is known as a turn-key system, you probably want your application to run
automatically, as soon as the user launches Maplnfo Professional.

Using Windows you can change the command line of a shortcut icon in a similar manner. Right-click
the shortcut icon, choose Properties, and click on the Shortcut tab.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 145 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Ordinarily, MapInfo Professional displays the Quick Start dialog as soon as the user runs it (unless the
user has cleared the Display Quick Start Dialog check box in the Startup Preferences dialog). However,
if you add the name of a MapBasic application to the command that launches Maplnfo Professional,
then the Quick Start dialog will not appear. Depending on the nature of your application, this behavior
may or may not be desirable. If you want your application to run automatically, without disabling the
Quick Start dialog, you may need to use a different method for loading your application. Instead of
modifying the MaplInfo Professional command line, you may want to create a special workspace, called
the Startup workspace.

If the user launches Maplinfo Professional by double-clicking the Maplnfo icon, the Quick Start dialog
box displays automatically (unless the user has cleared the Display Quick Start Dialog check box in the
Startup Preferences dialog). However, when the user launches Maplinfo Professional by double-
clicking on a Mapinfo document, the Quick Start dialog does not appear. Depending on the nature of
your application, this behavior may or may not be desirable. If you want your application to run
automatically, without disabling the Quick Start dialog, you may need to use a different method for
loading your application. You may want to create a special workspace, called the Startup workspace.

Loading Applications Through the Startup Workspace

“Startup” is a special name for a workspace. If a startup workspace exists on the user’s system,
MaplInfo Professional loads the workspace automatically. If the startup workspace contains a Run
Application statement, MapInfo Professional runs the specified application.

For example, if you want to run the ScaleBar application, you could create a startup workspace that
looks like this:

!Workspace

!Version 600

ICharset Neutral

Run Application ”scalebar.mbx”
The first three lines are required for Maplnfo Professional to recognize the file as a workspace. The
fourth line, in this example, launches a MapBasic application by executing a Run Application
statement.

The presence of a startup workspace has no effect on the display of the Quick Start dialog. Mapinfo
Professional loads the startup workspace (if there is one), and then displays the Quick Start dialog
(unless the user has configured the system so that the Quick Start dialog never displays).

On Windows, the startup workspace has the name STARTUP.WOR and can be located in the directory
in which Maplnfo Professional is installed or in the user’s private Windows directory (the directory
where WIN.INI is stored). If a STARTUP.WOR exists in both directories, both workspaces will be
executed when the user starts Maplnfo Professional.

In a networked environment, if you want the startup workspace to apply to all MapInfo Professional
users on the network, you should place the startup workspace file in the directory where Mapinfo
Professional is installed. If you do not want all the network users to run the same startup workspace
file, you should use the alternate location for the startup workspace (for example, on Windows, place
the workspace in the users’ private Windows directories).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 146 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

Manipulating Workspaces through MapBasic

Since workspaces are simply text files, you can create and edit a startup workspace using any text
editor. Furthermore, since a MapBasic program can perform file input/output, your MapBasic program
can automate the maintenance of the startup workspace.

To see how a MapBasic program can manipulate a workspace file, try this:

1. Choose Maplnfo Professional’s Tools > Run MapBasic Program command to run the TextBox
application.

2. Choose Tools > TextBox > About TextBox to display the About TextBox dialog.
3. Click on the Auto-Load button on the About TextBox dialog. MapInfo Professional displays a
dialog that lets you activate automatic loading of the TextBox application.

4. Choose OK on the Enable Automatic Loading dialog. Maplnfo Professional displays a
message indicating that the TextBox application is now configured to run automatically.
Choose OK on the About TextBox dialog.

5. Exit Mapinfo Professional, then restart it. Note that in this new MapInfo Professional session,
the TextBox application runs automatically; you do not need to choose Tools > Run MapBasic
application.

When you choose OK in step 4, the TextBox application adds a Run Application statement to
the startup workspace file. If the startup workspace file does not exist, the TextBox application
creates it.

The maintenance of the startup workspace is handled by functions and procedures in the program
module auto_lib.mb. Many of the sample programs that are bundled with Maplnfo Professional contain
the same functionality; for example, a MapInfo Professional user can set up the ScaleBar application to
run automatically by choosing the Auto-Load button on the About ScaleBar dialog.

The auto_lib.mb program module is one of the sample programs included with MapBasic. If you want
your application to include the Auto-Load feature, follow the instructions that appear in the comments
at the top of auto_lib.mb.

Performance Tips for the User Interface

Animation Layers

If you are making frequent updates to objects in a Map window, using an Animation Layer can make
the window redraw more quickly. Animation Layers are described earlier in this chapter.

Avoiding Unnecessary Window Redraws

Whenever your application alters a Map window (or alters an object in the window), MapInfo
Professional redraws the window. If your application makes several alterations, the Map window will
redraw several times, which can annoy your users.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 147 MB_UG.pdf

User Guide Chapter 7: Creating the User Interface

There are two ways to suppress unnecessary window redraws:

* To suppress unnecessary redrawing of one Map window, use the Set Map ... Redraw Off
statement. Then issue all statements that affect the Map window. When you are finished
updating the map, issue a Set Map ... Redraw On statement to allow the window to redraw.
The window will redraw once, showing all changes you made.

¢ To suppress unnecessary redrawing of all MaplInfo Professional windows, use the Set Event
Processing Off statement. When you are finished updating various windows, issue a Set
Event Processing On statement, and the screen will redraw once.

Purging the Message Window
The Print statement prints text to the Message window.

Note: Printing large amounts of text to the Message window can dramatically slow down subsequent
Print statements.

If your program prints large amounts of text to the message window, you should periodically clear the
Message window by issuing a Print Chr$(12) statement.

Suppressing Progress Bar Dialogs

If your application minimizes Maplnfo Professional, you should suppress progress bars by using the
Set ProgressBars Off statement.

When a progress bar displays while MaplInfo Professional is minimized, the progress bar is frozen for
as long as it is minimized. If you suppress the display of progress bars, the operation can proceed,
even if MapInfo Professional is minimized.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 148 MB_UG.pdf

Working With Tables

MapBasic provides you with a full complement of statements and
functions for working with tables. For instance, you can modify the
structure of a table using the Alter Table statement, or locate a row in a
table using Fetch. The Import statement lets you create a Maplinfo table
from a text file and the Export statement lets you export a table to a
different format.

This chapter introduces you to the MapBasic statements and functions
that let you manage your Maplnfo tables. Refer to the MapBasic
Reference for more information about each statement and function.

Sections in this Chapter:

¢+ Opening Tables Through MapBasic 150
¢ CreatingNew Tables................. ... iiinnn. 157
¢+ Accessing the CosmeticLayer...................... 162
¢ Accessing Layout Windows 162
¢ Multi-User Editing. i 163
¢ Filesthat MakeUpaTable.......................... 166
¢+ RasterlmageTables................... onn. 167
¢ WorkingWithMetadata 169
¢+ Working With Seamless Tables. 171
¢ AccessingDBMSData................. ..., 173
+ Accessing/Updating Remote Databases with Linked Tables .
175
¢ Performance Tips for Table Manipulation 176

£ Maplnfo.

User Guide Chapter 8: Working With Tables

Opening Tables Through MapBasic

A table must be open before a MapBasic application can access the table. Use the Open Table
statement to open a table. For example, the following statement opens the World table:

Open Table ”C:\mapinfoldata\world”

Notice that the Browse statement identifies the table by its alias (Earth). The table’s alias name
remains in effect for the as long as the table is open. The table has not been permanently renamed. To
permanently rename a table, use the Rename Table statement.

If you include the optional Interactive clause in the Open Table statement, and if the table you specify
cannot be located in the directory that you specify, MapInfo displays a dialog prompting the user to
locate the table. If you omit the Interactive keyword and the table cannot be located, the Open Table
statement generates an error.

Determining Table Names at Runtime

When referring to a table in MapBasic, you can either use a string expression or hard-code the table
name into your program. For example, if the tables States, Pipeline and Parcels are open when your
program is run, you can specify their names explicitly in your program:

Select * From States

Browse * From Pipeline

i = NumCols (Parcels)
You may or may not want to limit your program to work with specific table names. For example, you
might want to prompt the user to choose a table from a list of open tables. Since you wouldn’t know the
name of the selected table ahead of time, you couldn’t hard-code it into the program.

You can use a string variable to store the name of a table. Assuming that a table called Zoning is open,
you can do the following:

Dim work table As String
work_table = ”Zoning”
Browse * From work_ table

Opening Two Tables With The Same Name

Maplinfo assigns a non-default table alias if you attempt to open two tables that have the same alias.
For example, if you open the table “C:\data1994\sites”, MaplInfo assigns the table its default alias
(“sites”); but if you then attempt to open a different table that has an identical default alias (for example,
“C:\backup\sites”), MaplInfo must assign a non-default alias to the second table, so that the two tables
can be differentiated. In this example, MapInfo might assign the second table an alias such as
“sites_2.”

If you include the optional Interactive keyword in the Open Table statement, MapInfo will display a
dialog to let the user specify the table’s non-default alias. If you omit the Interactive keyword, Maplinfo
assigns the alias table name automatically.

As a result of this behavior, you may not be able to make assumptions about the alias name with which
a table was opened.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 150 MB_UG.pdf

User Guide Chapter 8: Working With Tables

However, you can use the Tablelnfo() function to determine the alias under which a table was opened,
as shown in the following example:

Include "mapbasic.def”

Dim s filename As String

Open Table ”states” Interactive
s_filename = TableInfo (0, TAB_INFO NAME)
Browse * from s_filename

The function call Tablelnfo(0, TAB_INFO_NAME) returns the alias name of the most recently opened
table.

Opening Non-Native Files As Tables

You can access “non-native” files (dBASE, Lotus, Excel, or text files) as tables, even though they are
not stored in the Maplnfo table format. However, before you access a non-native file through
MapBasic, you must register the file. When you register a file, MapInfo builds a table (.tab) file to
accompany the non-native file. You only need to register each file once. After you have registered a
file, you can treat the file as a table.

The following statement registers a dBASE file:

Register Table ”income.dbf” Type DBF

After you have registered a file, the file is considered a table, and you can open it the same way you
would open any Maplinfo table: by issuing an Open Table statement.

Open Table ”income” Interactive

Maplinfo’s ability to query a table is not affected by the table’s source. For example, you can issue a
SQL Select statement to extract data from a table, regardless of whether the table was based on a
spreadsheet or a database file.

However, Maplnfo’s ability to modify a table does depend in part on the table’s source. If a table is
based on a .dbf file, MapInfo can modify the table; when you Update such a table in Maplinfo, you are
actually modifying the original .dbf file. However, MapInfo cannot modify tables that are based on
spreadsheets or ASCII (text) files. If you need to modify a table, but MapInfo cannot modify the table
because it is based on a spreadsheet or ASCII file, make a copy of the table (using the Commit Table
... As statement) and modify the copy.

Creating A Report File From An Open Maplinfo Table

High quality reports of tabular data, processed within Mapinfo, can be produced using the industry
standard report writer. from Seagate Crystal Reports. Crystal provides a highly intuitive environment for
developing professional reports. See the Create Report From Table and Open Report statements in
the MapBasic Reference.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 151 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Reading Row-And-Column Values From a Table

MapBasic programs can access specific column values from specific rows in a table, through the
following procedure:

1. Use a Fetch statement to specify which row in the table you want to query. This action sets
which row is current.

2. Use a table-reference expression (for example, tablename.columnname) to access a specific
column in the current row.

For example, the following program reads the contents of the Country column from the first row of the
World table:

Dim s_name As String

Open Table ”"world” Interactive

Fetch First From world

s _name = world.Country
Every open table has a current-row setting; this setting is known as the row cursor (not to be confused
with the mouse cursor, which is the shape that moves across the screen as you move the mouse).
When you issue a Fetch statement, you position the row cursor on a specific row in the table.
Subsequent table references (for example, world.country) extract data from whichever row is specified
by the cursor.

The Fetch statement provides several different ways of positioning the cursor. You can move the
cursor forward or backward one row at a time, position the cursor on a specific row number, or set the
cursor on the first or last row in the table. To determine whether a Fetch statement has attempted to
read past the end of a table, call the EOT() function. For more information on the Fetch statement or
the EOT() function, see the MapBasic Reference.

The MapBasic language recognizes three different types of expressions that reference specific column

values:

Column reference syntax Example
tablename.columnname world.country
tablename.COLn world.COL1
tablename.COL(n) world.COL(i)

The preceding example used the tablename.columnname syntax (for example, world.country).

Another type of column reference is tablename.col#. In this type of expression, a column is specified
by number, not by name (where col1 represents the first column in the table). Since Country is the first
column in the World table, the assignment statement above could be rewritten as follows:

s_name = world.coll

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 152 MB_UG.pdf

User Guide Chapter 8: Working With Tables

A third type of column reference takes the form tablename.col(numeric expression). In this type of
reference, the column number is specified as a numeric expression within parentheses. The preceding
assignment statement could be rewritten as follows:

Dim i As Integer

i=1

s _name = world.col (i)
Using this syntax, you can write a MapBasic program that determines, at runtime, which column to
reference.

The tablename in a table reference is optional in statements in which the table name is already part of
the statement. For instance, in the Browse statement you are required to specify column names and
then the table name. Since the table name is explicitly specified in the statement (in the From clause),
the column references at the beginning of the line do not need to include the tablename.

Select Country, Population/1000000 From World

Browse Country, Col2 From Selection
The Select statement also has a From clause, where you name the table(s) to be queried. Column
names that appear within a Select statement do not need the tablename. prefix if the Select statement
queries a single table. However, if a Select statement’s From clause lists two or more tables, column
references must include the tablename. prefix. For a general introduction to using the SQL Select
statement, see the Mapinfo User Guide, or see Select in the MapBasic Reference.

There are instances in which you must use the COLn or the COL(n) column referencing method. In the
example above, the Select statement identifies two columns; the latter of these columns is known as a
derived column, since its values are derived from an equation (Population/1000000). The subsequent
Browse statement can refer to the derived column only as col2 or as col(2), because the derived
expression Population/1000000 is not a valid column name.

Alias Data Types as Column References

The preceding examples have used explicit, “hard-coded” column names. For example, the following
statement identifies the Country column and the Population column explicitly:

Select Country, Population/1000000 From World

In some cases, column references cannot be specified explicitly, because your application will not
know the name of the column to query until runtime. For example, if your application lets the user
choose a column from a list of column names, your application will not know until runtime what column
the user chose.

MapBasic provides a variable type, Alias, that you can use to store column expressions that will be
evaluated at runtime. As with String variables, you can assign a text string to an Alias variable.
MapBasic interprets the contents of the Alias variable as a column name whenever an Alias variable
appears in a column-related statement. For example:

Dim val_col As Alias

val col = ”"Inflat Rate”
Select * From world Where val col > 4

MapBasic substitutes the contents of val_col (the alias, Inflat_Rate) into the Select statement in order
to select all the countries having an inflation rate greater than 4 percent.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 153 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Note: The maximum length of the alias is 32 characters.

In the example below, the sub-procedure Maplt opens a table, maps it, and selects all records from a
specified column that have a value greater than or equal to a certain value. Maplt uses an Alias
variable to construct column references that will be evaluated at runtime.

Include "mapbasic.def”

Declare Sub Main

Declare Sub MapIt(ByVal filespec As String,
ByVal col name As String,
ByVal min_value As Float)

Sub Main

Call MapIt (”C:\MAPINFOW\MAPS\WORLD.TAB”, "population”, 15000000)
End Sub
Sub MapIt(ByVal filespec As String,

ByVal col name As String,
ByVal min value As Float)

Dim a name As Alias

a_name = col name

Open Table filespec

Map From TableInfo (0, TAB INFO NAME)

Select * From TableInfo (0, TAB INFO NAME)

Where a name >= min value
End Sub

In the Maplt procedure, a Select statement specifies an Alias variable (a_name) instead of an explicit
column name. Note that the col_name parameter is not an Alias parameter; this is because MapBasic
does not allow by-value Alias parameters. To work around this limitation, the column name is passed
as a by-value String parameter, and the contents of the String parameter are copied to a local Alias
variable (a_name).

The example above demonstrates how an Alias variable can contain a string representing a column
name (“population”). An Alias variable also can contain a full column reference in the form
tablename.columnname. The following example demonstrates the appropriate syntax:

Dim tab_expr As Alias
Open Table ”"world”
Fetch First From world
tab expr = ”"world.COL1”
Note tab expr

The preceding Note statement has the same effect as the following statement:

Note world.COL1l

Scope

The syntax fablename.columnname (for example, world.population) is similar to the syntax used to
reference an element of a custom Type. MapBasic tries to interpret any name.name expression as a
reference to an element of a Type variable. If the expression cannot be interpreted as a type element,
MapBasic tries to interpret the expression as a reference to a column in an open table. If this fails,
MapBasic generates a runtime error.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 154 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Using the “RowlID” Column Name To Refer To Row Numbers

RowID is a a special column name that represents the row numbers of rows in the table. You can treat
RowlID as a column, although it isn’t actually stored in the table. Think of RowlID as a virtual column,
available for use, but not visible. The first row of a table has a RowID value of one, the second row has
a RowlID value of two, and so on.

The following example selects the first row from the World table:

Select * from world Where RowID = 1

The following example uses RowlD to Select all of the states with a 1990 population greater than the
median.

Dim median row As Integer

Select * From states Order By pop_ 1990 Into bypop

median row = Int(TableInfo (bypop, TAB_INFO_ NROWS) /2)

Select * From bypop Where RowID > median row
Since the Tablelnfo() function returns the total number of rows in the virtual table bypop, the variable
median_row contains the record number of the state with the median population. The last select
statement selects all the states that come after the median in the ordered table bypop.

If you delete a row from a table, the row is not physically deleted until you perform a pack operation.
(Rows that have been deleted appear grayed in a Browse window.) Any deleted row still has a RowID
value. Thus, deleting a row from a table does not affect the RowlID values in the table; however, if you
delete a row, save your changes, and then pack the table, the table’s RowlID values do change. To
pack a table, choose Maplnfo’s Table > Maintenance > Pack Table command, or issue the MapBasic
statement Pack Table.

Using the “Obj” Column Name To Refer To Graphic Objects

The Obj column is a special column name that refers to a table’s graphical objects. Any table that has
graphical objects has an Obj column (although the Obj column does not appear in any Browser
window). If a row does not have an associated graphic object, that row has an empty Obj value.

The following example selects all rows that do not have a graphic object:

Select * From sites Where Not Obj
This is useful, for instance, in situations where you have geocoded a table and not all of the records
matched, and you want to select all of the records that did not match.

The following example copies a graphical object from a table into an Object variable:

Dim o_var As Object
Fetch First From sites
o_var = sites.obj

For more information about graphical objects, see Chapter 10: Graphical Objects.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 155 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Finding Map Addresses In Tables

Maplnfo users can find addresses in maps by choosing Query > Find. MapBasic programs can perform
similar queries by issuing Find statements and Find Using statements. The Find Using statement

specifies the table to be queried; the Find statement tries to determine the geographic coordinates of a
location name (for example, “23 Main St”). The Find statement also can locate the intersection of two
streets, given a string that includes a double-ampersand (for example, “Pawling Ave && Spring Ave”).

After issuing a Find statement, call CommandIinfo() to determine whether the address was located,
and call CommandInfo() again to determine the location’s geographic coordinates. Unlike Mapinfo’s
Query > Find command, the MapBasic Find statement does not automatically re-center a Map window.
If you want to re-center the Map window to show the location, issue a Set Map statement with a Center
clause. Also, the Find statement does not automatically add a symbol to the map to mark where the
address was found. If you want to add a symbol, use the CreatePoint() function or the Create Point
statement. For a code example, see Find in the MapBasic Reference or online Help.

Geocoding
To perform automatic geocoding:

1. Use the Fetch statement to retrieve an address from a table.
2. Use the Find Using statement and the Find statement to find the address.

3. Call Commandinfo() to determine how successful the Find statement was; call
Commandinfo() again to determine x- and y-coordinates of the found location.

4. Create a point object by calling the CreatePoint() function or the Create Point statement.
5. Use the Update statement to attach the point object to the table.

To perform interactive geocoding, issue the following statement:

Run Menu Command M_TABLE_GEOCODE

If you need to perform high-volume geocoding, you may want to purchase MapMarker, a dedicated
geocoding product that is sold separately. MapMarker geocodes faster than MaplInfo and allows single-
pass geocoding across the entire United States. MapBasic applications can control MapMarker
through its programming interface. For more information on MapMarker, contact MaplInfo sales. The
phone numbers appear at the start of this and other MapInfo manuals.

Performing SQL Select Queries

Maplnfo users can perform sophisticated queries by using Mapinfo’s Query > SQL Select dialog. All of
the power of the SQL Select dialog is available to MapBasic programmers through MapBasic’s Select
statement. You can use the Select statement to filter, sort, sub-total, or perform relational joins on your
tables. For information, see Select in the MapBasic Reference.

Error Checking for Table and Column References

MapBasic cannot resolve references to tables and columns at compile time. For instance, if your
program references a column called states.pop, the MapBasic compiler cannot verify whether the
states table actually has a column called pop. This means that typographical errors in column
references will not generate errors at compile time. However, if a column reference (such as
states.pop) contains a typographical error, an error will occur when you run the program.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 156 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Try the following to minimize the possibility of generating runtime errors. Use the Interactive clause
with the Open Table statement, when appropriate. If the table cannot be located, a dialog will prompt
the user to locate the table. Don’t assume that the table was opened under its default alias. After you
issue an Open Table statement, call Tablelnfo(0, TAB_INFO_NAME) to determine the alias assigned
to the table. For more information on opening tables, see Open Table in the MapBasic Reference.

Writing Row-And-Column Values to a Table

To add new rows to a table, use the Insert statement. To change the values stored in the columns of
existing rows, use the Update statement. Both statements are described in the MapBasic Reference
and online Help.

If you add new rows to a table or modify the existing rows in a table, you must save your changes by
issuing a Commit statement. Alternately, to discard any unsaved edits, issue a RollBack statement.

Creating New Tables

Use the Create Table statement to create a new, empty table. Use the Create Index statement to add
indexes to the table, and use Create Map to make the table mappable.

The following example creates a mappable table with a name, address, city, amount, order date, and
customer ID columns. The name field and the customer ID field are indexed.

Create Table CUST

(Name Char (20),

Address Char (30),

City Char(30),

Amount Decimal (5,2),

OrderDate Date,

CustID Integer)

File ”C:\customer\Cust.tab”
Create Map For CUST CoordSys Earth

Create Index On CUST (CustID)

Create Index On CUST (Name)

You can also create a table by saving an existing table (for example, a selection) as a new table using
the Commit statement, or by importing a table using the Import statement.

Modifying a Table’s Structure

Every table has a structure. The structure refers to issues such as how many columns are in the table,
and which of the columns are indexed. A MaplInfo user can alter a table’s structure by choosing
Maplnfo’s Table > Maintenance > Table Structure command. A MapBasic program can alter a table’s
structure by issuing statements such as Alter Table and Create Index.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 157 MB_UG.pdf

User Guide Chapter 8: Working With Tables

As a rule, a table’s structure cannot be modified while the table has unsaved edits. If you have added
rows to a table, but you have not saved the table, the table has unsaved edits. If a table has unsaved
edits, you must save the edits (by issuing a Commit statement) or discard the edits (by issuing a
Rollback statement) before modifying the table’s structure.

The Alter Table statement modifies a table’s structure. The following example renames the Address
column to ShipAddress, lengthens the Name column to 25 characters, removes the Amount column,
adds new ZIP Code and Discount columns, and re-orders the columns.

Alter Table CUST (Rename Address ShipAddress,

Modify Name Char (25),

Drop Amount

Add Zipcode Char (10),

Discount Decimal (4,2)
Order Name, Address, City, Zipcode,
OrderDate, CustID, Discount)
You cannot change the structure of tables that are based on spreadsheets or delimited ASCII files, and

you cannot change the structure of the Selection table.

Use the Add Column statement to add a temporary column to a table. The Add Column statement
lets you create a dynamic column that is computed from values in another table. Add Column can also
perform advanced polygon-overlay operations that perform proportional data aggregation, based on
the way one table’s objects overlap another table’s objects. For example, suppose you have one table
of town boundaries and another table that represents a region at risk of flooding. Some towns fall partly
or entirely within the flood-risk area, while other towns are outside the risk area. The Add Column
statement can extract demographic information from the town-boundaries table, then use that
information to calculate statistics within the flood-risk area. For information about the Add Column
statement, see the MapBasic Reference.

Creating Indexes and Making Tables Mappable

Table indexes help Maplnfo to optimize queries. Some operations, like Maplnfo’s Find and Geocode
menu items, require an index to the field to be matched against. For instance, before you can use the
Find command to locate a customer in your database by name, you must index the name column.
Select statements execute faster for many queries when you use columns with indexes. SQL joins
create a temporary index if the fields specified in the Where clause are not indexed. There is no limit to
the number of columns that can be indexed. The Obj column is always indexed.

To create an index in MapBasic, use the Create Index statement. To remove an index, use the Drop
Index statement.

MapBasic cannot use indexes created in other packages and MapBasic cannot index on an
expression.

An index does not change the order of rows in a Browser window. To control the order of rows in a
Browser, issue a Select statement with an Order By clause, and browse the selection.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 158 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Reading A Table’s Structural Information

The functions Tablelnfo(), Columninfo() and NumTables() let you determine information about the
tables that are currently open.

¢ Tablelnfo() returns the number of rows in the table, the number of columns, and whether or
not the table is mappable.

¢ Columnlinfo() returns information about a column in a table, such as the column’s name, the
column’s data type, and whether the column is indexed.

¢ NumTables() returns the number of currently open tables (including temporary tables such as
Query1).
The following program determines which tables are open and copies the table names into an array.
Include "mapbasic.def”

Dim i, table count As Integer
Dim tablenames () As String

' determine the number of open tables
table count = NumTables ()

' Resize the array so that it can hold
' all of the table names.
ReDim tablenames (table count)

' Loop through the tables
For i = 1 To table count

' read the name of table # 1
tablenames (i) = TableInfo(i, TAB INFO_NAME)

"display the table name in the message window
Print tablenames (i)

Next

Working With The Selection Table

Selection is a special table name that represents the set of rows that are currently selected. A
MapBasic program (or an end-user) can treat the Selection table like any other table.

For example, you can browse the set of currently-selected rows by issuing the following statement:

Browse * From Selection

When you access the Selection table in this way, Maplnfo takes a snapshot of the table and names the
snapshot QueryN, where N is a integer value of one or greater. Like Selection, QueryN is a temporary
table. The Selectioninfo() function lets you determine the table alias MaplInfo will assign to the current
Selection table (i.e., to learn whether the current Selection table will be known as Query1 or as
Query?2). Selectioninfo() also lets you determine other information about the Selection, such as the
number of selected rows.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 159 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Cleaning Up “QueryN” Tables

As you use Maplnfo, you may find that you have opened a number of “QueryN” tables (Query1,
Query2, etc.). For example, if you click on a map object and then browse the selection, the window’s
titte may read “Query1 Browser.” Each QueryN is a snapshot of a former selection.

MapBasic programs can cause QueryN tables to be opened as well. For example, making a reference
to a column expression such as Selection.Obj causes Mapinfo to open a QueryN table. If you want
your MapBasic program to close any QueryN tables that it opens, do the following:

* When you use Select statements, include the optional Into clause. Then, instead of accessing
the table name “Selection” access the table name that you specified in the Into clause. If you
use the Into clause, MaplInfo will not open QueryN tables when you access the query results.
When you are done working with the query results table, close it by using a Close Table
statement.

¢ If the user makes a selection (for example, by clicking on a map object), and then your
program works with the selection, MapInfo will open a QueryN table. The following example
shows how to close the QueryN table.

' Note how many tables are currently open.
i_open = NumTables ()

' Access the Selection table as necessary. For example:
Fetch First From Selection
obj_copy = Selection.obj

" If we just generated a QueryN table, close it now.
If NumTables() > i open Then

Close Table TableInfo (0, TAB_ INFO NAME)
End If

Changing the Selection

Use the Select statement to change which rows are selected. The Select statement is a very powerful,
versatile statement. You can use the Select statement to filter, sort, or sub-total your data, or to
establish a relational join between two or more tables. All of the power of MaplInfo’s Query > SQL
Select command is available to MapBasic programmers through the Select statement.

If you issue a Select statement, and if you do not want the results table to have a name such as
Query1, you can assign another name to the results table. The Select statement has an optional Into
clause that lets you specify the name of the results table. For example, the following statement makes
a selection and names the results table “Active.”

Select * From sites
Where growth > 15
Into Active
For an introduction to the capabilities of SQL Select queries, see the Mapinfo User Guide. For detailed
information about the Select statement, see Select in the MapBasic Reference.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 160 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Updating the Currently-Selected Rows

You can use the Update statement to modify the Selection table. If you modify the Selection table, the
changes that you make are applied to the base table on which the selection is based.

For example, the following Select statement selects some of the rows from the employees table. After
the Select statement, an Update statement modifies the data values of the selected rows.

Select * from employees
Where department = “marketing” and salary < 20000

Update Selection
Set salary = salary * 1.15

The Update statement will alter the values of rows in the employees table, because the selection is
based on the employees table.

Using the Selection for User Input

The Selection process is part of the user interface. Some applications are arranged so that the user
selects one or more rows, then chooses an appropriate menu item. When the user makes a selection,
the user is specifying an object (a noun). When the user chooses a menu item, the user is specifying
an action (a verb) to apply to that object.

The sample program, TextBox, is based on this noun/verb model. The user selects one or more text
objects, then chooses the Tools > TextBox > Create Text Boxes command. The TextBox application
then queries the Selection table, and draws boxes around the text objects that the user selected.

To query the current selection, use the Selectioninfo() function. By calling SelectionInfo(), you can
determine how many rows are selected (if any) at the present time. If rows are currently selected, you
can call SelectionInfo() to determine the name of the table from which rows were selected. You then
can call TableIlnfo() to query additional information about the table.

If your application includes a sub-procedure called SelChangedHandler, Maplinfo calls that procedure
every time the selection changes. For example, you may want some of your application’s custom menu
items to only be enabled when rows are selected. To perform that type of selection-specific menu
maintenance, create a SelChangedHandler procedure. Within the procedure, call
SelectionIinfo(SEL_INFO_NROWS) to determine if any rows are selected. Based on whether any
rows are selected, issue an Alter Menu Item statement that enables or disables appropriate menu
items. For more information on menu maintenance, see Chapter 7: Creating the User Interface.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 161 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Accessing the Cosmetic Layer

Each Map window has one Cosmetic layer, a special-purpose layer which is the top layer in the map. If
the user performs a Find operation, MaplInfo places a symbol at the “found” location. Such symbols are
stored in the Cosmetic layer. in earlier versions of Maplinfo, labels were also stored in the Cosmetic
layer. Version 4.0, however, treats labels as display attributes, not as Cosmetic objects. See

Chapter 10: Graphical Objects for more information on labeling.

To control the Cosmetic layer through MapBasic, issue table-manipulation statements (such as Select,
Insert, Update, or Delete) and specify a table name such as CosmeticN (where N is an Integer, one
or larger). For example, the table name Cosmetic1 corresponds to the Cosmetic layer of the first Map
window on the screen. The following statement selects all objects in that Map window’s Cosmetic layer:

Select * From Cosmeticl

To determine a Cosmetic layer’s exact table name, call Windowlnfo() with the code
WIN_INFO_TABLE. For example, the following statement deletes all objects from the Cosmetic layer
of the active map window (assuming that the active window is a Map window):

Delete From WindowInfo (FrontWindow (), WIN_ INFO TABLE)

Accessing Layout Windows

MapBasic’s object-manipulation statements can be applied to the objects on a Layout window. To
manipulate a Layout window, issue statements that use the table name LayoutN (where N is an
integer, one or larger).

For example, the table name Layout1 corresponds to the first Layout window that you open. The
following statement selects all objects from that Layout window:

Select * From Layoutl

You can determine a Layout window’s exact table name by calling the WindowlInfo() function with the
WIN_INFO_TABLE code.

Note: Objects stored on a Layout window use a special coordinate system, which uses “paper” units
(units measured from the upper-left corner of the page layout). Any MapBasic program that
creates or queries object coordinates from Layout objects must first issue a Set CoordSys
statement that specifies the Layout coordinate system.

For example, the TextBox sample program draws boxes (rectangle objects) around any currently-

selected text objects, regardless of whether the selected text objects are on a Map window or a Layout

window. If the selected objects are Layout objects, TextBox issues a Set CoordSys Layout statement.

When you are using Maplinfo interactively, MapInfo’s Statistics Window gives you an easy way of
determining the table name that corresponds to a Layout window or to a Map window’s Cosmetic layer.
If you select an object in a Map’s Cosmetic layer, and then show the Statistics Window (for example, by
choosing Options > Show Statistics Window), the Statistics window displays a message such as,
“Table Cosmetic1 has 1 record selected.” Similarly, if you select an object from a Layout window, the
Statistics window displays, “Table Layout1 has 1 record selected.”

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 162 MB_UG.pdf

User Guide

Chapter 8: Working With Tables

Multi-User Editing

If your MapBasic program works with tables in a multiple-user environment, you may encounter file-
sharing conflicts. Sharing conflicts occur because Maplnfo only allows one user to modify a table at a

time.

This section spells out the rules that govern Mapinfo’s multi-user editing behavior. Read this section if
you want to write a MapBasic program that allows multiple users to modify the same table at the same

time.

The Rules of Multi-User Editing

Maplnfo’s multi-user table editing has three restrictions, described below.

Rule 1: A table may only be edited by one user at a time.
Imagine two hypothetical users: User A and User B. Both users are attempting to use the
same table, which is stored on a network.

User A begins editing the table. (For example, User A adds new rows to the table.) Moments
later, User B attempts to edit the same table. Maplinfo prevents User B from editing the table,
and displays the message, “Cannot perform edit. Someone else is currently editing this table.”
If User B is trying to edit the table through a MapBasic application, a runtime error occurs in the
application.

As long as User A continues to edit the table, Maplinfo prevents User B from editing the same
table. This condition remains until User A performs Save, Revert (discarding the edits), or
Close Table.

Note: User B is allowed to read from the table that User A is editing. For example, User B
can display the table in a Map window. However, User B will not “see” the edits made
by User A until User A performs a Save.

Rule 2: Users cannot read from a table while it is being saved.

After editing the table, User A chooses the File > Save Table command. Then, while the Save

operation is still underway, User B attempts to read data from the table. As long as the Save is

underway, Maplnfo prevents User B from accessing the table at all. MaplInfo displays a dialog
box (on User B’s computer) with the message, “Cannot access file <tablename>.DAT for read.”

The dialog contains Retry and Cancel buttons, with the following meaning:

Retry

If User B clicks Retry, Mapinfo repeats the attempt to read from the file. The Retry attempt will
fail if the Save is still underway. The user can click the Retry button repeatedly. After the Save
operation finishes, clicking the Retry button succeeds.

Cancel

If User B clicks Cancel, MaplInfo cancels the operation, and the Retry/Cancel dialog box
disappears. Note: If User B was loading a workspace when the sharing error occurred, clicking
Cancel may halt the loading of the rest of the workspace. For example, a workspace contains
Open Table statements. If the Open Table statement was the statement that caused the
sharing conflict, and if the user Cancels the Retry/Cancel dialog, MapInfo will not open the
table. Subsequent statements in the workspace may fail because the table was not opened.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 163 MB_UG.pdf

User Guide Chapter 8: Working With Tables

¢ Rule 3: A Save cannot be started while the table is being read by other users.
If other users are reading the table at the exact moment that User A chooses File > Save
Table, the Save Table command cannot proceed. Maplinfo displays the message, “Cannot
open file <tablename>.DAT for writing.” The dialog contains Retry and Cancel buttons, with the
following meaning:

Retry

If User A clicks Retry, MaplInfo repeats the attempt to save the table. The user can click the
Retry button repeatedly. Clicking the Retry button will only succeed if the other users have
finished reading from the table.

Cancel

If User A clicks Cancel, Mapinfo cancels the Save operation, and the Retry/Cancel dialog box
disappears. At this point, the table has not been saved, and the edits will not be saved unless
User A chooses File > Save Table again.

How to Prevent Conflicts When Reading Shared Data

As discussed in the previous section, some sharing conflicts display a Retry/Cancel dialog box.
Ordinarily, the Retry/Cancel dialog box appears at the moment a sharing conflict occurs. However, a
MapBasic program can suppress the dialog box by using the Set File Timeout statement.

In the parts of your program where you open or read from a shared table, use the Set File Timeout
statement with a value larger than zero. For example, if you have a procedure that opens several
tables, you may want to issue this statement at the start of the procedure:

Set File Timeout 100

The Set File Timeout statement sets a time limit; in this example, the time limit is 100 seconds. In
other words, Maplnfo will automatically retry any table operations that produce a sharing conflict, and
MaplInfo will continue to retry the operation for up to 100 seconds. Note that Maplinfo retries the table
operations instead of displaying a Retry/Cancel dialog. If the sharing conflict still occurs after 100
seconds of retries, the automatic retry stops, and Maplinfo displays the Retry/Cancel dialog box.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 164 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Preventing Conflicts When Writing Shared Data

Several MapBasic statements alter the contents of a table. For example, the Insert statement adds
new rows to a table. If your program attempts to alter the contents of a table, and a sharing conflict
occurs, a MapBasic runtime error occurs. To trap this error, use the OnError statement. For example, if
you have a procedure that inserts new rows into a table (as in the example below), you should create
an error-handling routine, and place an OnError statement at the top of the procedure to enable error
trapping. (Error-handling is discussed in more detail in Chapter 6: Debugging and Trapping Runtime

Errors.)

CAUTION: Use the Set File Timeout statement and the OnError statement exclusively. In places
where an error handler is enabled, the file-timeout value should be zero. In places
where the file-timeout value is non-zero, error handling should be disabled. The
following example demonstrates this logic.

Function MakeNewRow (ByVal new name As String) As Logical

"turn off automatic retries
Set File Timeout O

"turn off window redraws
Set Event Processing Off

"enable error-trapping
OnError Goto trap_the_ error

'Add a new row, and save the new row immediately.
Insert Into Sitelist (”Name”) Values (new name)
Commit Table Sitelist

'Set return value to indicate success.
MakeNewRow = TRUE

exit ramp:

Set Event Processing On
Exit Function

trap the error:
' The program jumps here if the Insert or Commit
' statements cause runtime errors (which will happen
' if another user is already editing the table).

If Ask(”Edit failed; try again?”, ”Yes”, "No”) Then
’ ... then the user wants to try again.
Resume 0

Else

" the user does not want to retry the operation.

" If the Insert succeeded, and we’re getting an error
" during Commit, we should discard our edits.
Rollback Table Sitelist

' get function’s return value to indicate failure:
MakeNewRow = FALSE
Resume exit_ramp
End If
End Function

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 165 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Note the following points:

* When you modify a shared table, try to minimize the amount of time that the table has unsaved
edits. In the example above, the Commit statement follows immediately after the Insert
statement, so that there is very little time during which the table has unsaved edits.

¢ The example uses Set Event Processing Off to suspend event processing; as a result,
MaplInfo will not redraw any windows during the edit. If we did not suspend event processing,
the Insert statement might cause MaplInfo to redraw one or more windows, and the window
redraw could conceivably trigger a sharing conflict (for example, because other tables in the
same Map window may have a sharing conflict).

* This function sets file-timeout to zero. The procedure that calls this function may need to reset
file-timeout to its previous value.

Opening a Table for Writing

When you open a table in a multiple-user environment, there is a chance that MapInfo will open the
table with read-only access, even if the files that comprise the table are not read-only. If a MapBasic
program issues an Open Table statement at the exact moment that the table is being accessed by
another user, Maplnfo may open the table with a read-only status. The read-only status prevents
successive statements from modifying the table.

The following example shows how to prevent Maplnfo from opening shared tables with a read-only
status. Instead of simply issuing an Open Table statement, issue the statement within a loop that
iterates until the file is opened read/write.

Retry point:

Open Table ”G:\MapInfo\World”

If TableInfo (”World”, TAB INFO READONLY) Then
Close Table World
Goto Retry point

End If

Files that Make Up a Table

A table consists of several files: one file contains information about the table structure (column names,
etc.); another file contains the table’s row-and-column values; another file contains the table’s graphic
objects (if any); and the remaining files contain indexes. The file containing the row-and-column data
can be in any format supported by Maplinfo: .dbf, Lotus .wks or .wk1 format, delimited ASCII file format,
or Excel .xls file format.

e filename.tab: Describes the structure of your table.

» filename.dat or filename.dbf or filename.wks: Contains tabular (row-and-column) data.
e filename.map: Contains the table’s graphic objects.

* filename.id: Contains a geographic index.

e filename.ind: Contains indexes for columns in the table.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 166 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Because each table consists of several component files, you must be very careful when renaming a
table. To rename a table, choose Maplnfo’s Table > Maintenance > Rename Table command, or issue
the MapBasic Rename Table statement.

Raster Image Tables

Raster image tables (tables that display only raster image data, not vector data) do not have all of the
component files listed above, because raster image tables do not contain tabular data. Every raster
image table consists of at least two files: a .tab file (which stores the image’s control points) and the file
or files that store the raster image. For example, if a raster image table is based on the file photo.tif, the
table might consist of two files: photo.tif and photo.tab.

In many ways, a raster image table is just like any other table. To open a raster image table, use an
Open Table statement. To display a raster image table in a Map window, issue a Map statement. To
add a raster image table to an existing map, issue an Add Map Layer statement. However, you cannot
perform a Select operation on a raster image table. To determine if a table is a raster table, call
Tablelnfo() with the TAB_INFO_TYPE code. If the table is a raster table, Tablelnfo() returns the code
TAB_TYPE_IMAGE. As a rule, MapInfo does not alter the original image file on which a raster table is
based. Therefore:

¢ If you use the Drop Table statement to delete a raster table, Mapinfo deletes the table file, but
does not delete the image file on which the table is based.

* If you use the Rename Table statement on a raster table, MapInfo renames the table file, but
does not rename the image file on which the table is based.

¢ If you use the Commit statement to copy a raster table, MapInfo copies the table file but does
not copy the image file on which the table is based.
A raster image table’s .tab file is created when a user completes MaplInfo’s Image Registration dialog.
If you need to create a .tab file for a raster image through a MapBasic program, create the file using
standard file input/output statements: create the file using the Open File statement, and write text to
the file using the Print # statement; see example below.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 167 MB_UG.pdf

User Guide Chapter 8: Working With Tables

The following program creates a table file to accompany a raster image file. This program assigns
“‘dummy” coordinates, not true geographic coordinates. Therefore, the final table will not be suitable for
overlaying vector map layers. However, if the raster image is a non-map image (as a company logo),

the use of non-geographic coordinates is not a problem.

Include "mapbasic.def”

Declare Sub Main

Declare Function register nonmap image (ByVal filename As String,
ByVal tablename As String) As Logical

Sub Main
Dim fname, tname As String
fname = ”c:\data\raster\photo.gif” 'name of an existing image
tname = PathToDirectorys$ (fname)
+ PathToTableName$ (fname) + ”.tab” ’‘name of table to create

If FileExists (tname) Then
Note ”"The image file is already registered; stopping.”
Else
If register_ nonmap_image (fname, tname) Then
Note ”"Table file created for the image file: ”
+ fname + ”.”
Else
Note ”Could not create table file.”
End If
End If
End Sub

Function register nonmap image(ByVal filename As String,
ByVal tablename As String) As Logical
register nonmap image = FALSE
OnError GoTo handler
Open File tablename For Output As #1 FileType “MIta”

Print #1, ”!Table”

Print #1, ”!Version 300"

Print #1, ”!charset Neutral”

Print #1

Print #1, ”"Definition Table”

Print #1, ” File """ 4+ filename + """"

Print #1, ” Type "“"RASTER"” "

Print #1, ” (1,1) (1,1) Label ”""Pt 1"", ”

Print #1, ” (5,1) (5,1) Label »7pt 27", "

Print #1, ” (5,5) (5,5) Label ""pt 37" "

Print #1, ” CoordSys NonEarth Units ””mm”” ”

Print #1, ” Units “"mm”” "

Print #1, ” RasterStyle 1 45” ' Brightness; default is 50
Print #1, ” RasterStyle 2 60” ' Contrast; default is 50
Close File #1

register nonmap image = TRUE ' set function return value

last _exit:

Exit Function
handler:

Close File #1

Resume last exit
End Function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 168

MB_UG.pdf

User Guide Chapter 8: Working With Tables

Working With Metadata

What is Metadata?

Metadata is data that is stored in a table’s .TAB file, instead of being stored as rows and columns. For
example, if you want to record summary information about who edited a table or when they performed
the edits, you could store that information as metadata.

Metadata is not displayed in the standard Maplinfo user interface. Users cannot see a table’s metadata
(unless they display the .TAB file in a text editor or run the TableMgr sample MBX). However, MapBasic
applications can read and write metadata values.

Each table can have zero or more metadata keys. Each key represents an information category, such
as an author’s name, a copyright notice, etc. For example, a key named “\Copyright” might have the
value “Copyright 1999 Acme Corp.”

What Do Metadata Keys Look Like?

Each metadata key has a name, which always starts with the “\” (backslash) character. The key name
never ends with a backslash character. Key names are not case-sensitive.

The key’s value is always a string, up to 239 characters long.

The following table provides samples of metadata keys and key values.

Sample Key Name Sample Key Value
"\Copyright Notice" Copyright 2001 Bryan Corp."
"Info" "Tax Parcels Map"

"Info Author" "Meghan Marie"
"Info\Date\Start" "12/14/01"
"Info\Date\End" "12/31/01"
"IsReadOnly" "FALSE"

Note the following points:

e Spaces are allowed within key names and within key values.

* You can define a hierarchy of keys by using key names that have two or more backslash
characters. In the table above, several of the keys belong to a hierarchy that starts with the
“\Info” key. Arranging keys in hierarchies allows you to work with an entire hierarchy at a time
(for example, you can delete an entire hierarchy with a single statement).

* “\IsReadOnly” is a special key, reserved for internal use by Maplinfo. When you add metadata
to a table, MapInfo automatically creates the \IsReadOnly key. Do not attempt to modify the
\IsReadOnly key.

* The table above shows each string within quotation marks to emphasize that they are string
values. However, when you retrieve keys from a table, the strings retrieved by MapBasic do
not actually include quotation marks.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 169 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Examples of Working With Metadata

The GetMetadata$() function allows you to query a table’s metadata, but only if you already know the
exact name of the metadata key. If you know that a table has a key called “\Copyright” then the
following function call returns the value of that key:

s_variable = GetMetadata$ (table name, “\Copyright”)

The Metadata statement allows you to create, modify, or query a table’s metadata, even if you do not
know the names of the keys. The following examples demonstrate the various actions that you can
perform using the Metadata statement. Note: In the following examples, table_name represents a
string variable that contains the name of an open table.

The following example stores a key value in a table. If the key already exists, this action changes the
key’s value; if the key does not already exist, this action adds the key to the table’s metadata.

Metadata Table table name
SetKey ”\Info\Author” To “Laura Smith”

The following statement deletes the “\Info\Author” key from the table.

Metadata Table table name
Dropkey “\Info\Author”
The following statement deletes an entire hierarchy of keys at one time. All keys whose names start
with “\Info\” will be deleted.

Metadata Table table name
Dropkey “\Info” Hierarchical
When you use the Metadata statement to write or delete metadata, the changes take effect
immediately. You do not need to perform a Save operation.

You also can use the Metadata statement to read the metadata from a table, even if you do not know
the names of the keys. To read a table’s metadata:

1. Issue a Metadata Table ... SetTraverse statement to initialize a traversal.

2. Issue a Metadata Traverse ... Next statement to retrieve a key. This statement retrieves the
key’s name into one string variable, and retrieves the key’s value into another string variable.

3. Continue to issue Metadata Traverse ... Next statements to retrieve additional keys. Typically,
this statement is issued from within a loop. Once you have exhausted the keys, Metadata
Traverse ... Next returns an empty string as the key name.

4. Terminate the traversal by issuing a Metadata Traverse ... Destroy statement. This action
releases the memory used by the traversal.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 170 MB_UG.pdf

User Guide Chapter 8: Working With Tables

The following example shows how to traverse a table’s metadata.

Sub Print Metadata(ByVal table name As String)

Dim i_traversal As Integer
Dim s_keyname, s_keyvalue As String

' Initialize the traversal. Specify ”\” as the
' starting key, so that the traversal will start
' with the very first key.
Metadata Table table name
SetTraverse ”\” Hierarchical 1Into ID i traversal
' Attempt to fetch the first key:
Metadata Traverse i traversal
Next Into Key s _keyname Into Value s_keyvalue
' Now loop for as long as there are key values;
" with each iteration of the loop, retrieve
' one key, and print it to the Message window.
Do While s _keyname <> "”

Print » ”
Print ”“Key name: ” & s_keyname
Print ”Key value: ” & s_keyvalue

Metadata Traverse i traversal

Next Into Key s _keyname Into Value s _keyvalue
Loop

7

Release this traversal to free memory:
MetaData Traverse 1 traversal Destroy

End Sub

For a complete listing of the syntax of the Metadata statement, see Metadata in the MapBasic
Reference or online Help.

Working With Seamless Tables

What is a Seamless Table?

Seamless tables allow you to group multiple tables together and treat them as a single table. Once you
have grouped your tables into a seamless table, you can add the entire group of tables to a Map
window very easily, simply by adding the seamless table (in the Layer Control dialog). For an
introduction to working with seamless tables, see the Maplinfo User Guide.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 171 MB_UG.pdf

User Guide Chapter 8: Working With Tables

How Do Seamless Tables Work?

Maplinfo includes a MapBasic program, Seamless Manager (seammgr.mbx), that allows you to create
and manipulate seamless tables. To see how a seamless table is composed, you need to turn the

table’s “seamless behavior” off, as follows:

1. Open a seamless table, such as DCMetroA.
2. Run the Seamless Manager application.

3. Choose Tools > Seamless Manager > Turn Seamless Off to turn off the seamless attribute for
the DCMetroA table.

4. Choose Window > New Browser Window to display the table in a Browser window.

Like ordinary tables, a seamless table has rows and columns. Each row corresponds to a base table
that is included in the seamless table.

Select Baze Table E
Descriptions from the Enter description to find base table.

second column . . .

Drezcription |DC

EE Dcmetroa Browser

Table Descriptipn |
N Exact match nat faund.
| “Dowasha. TAB Dcwasha
| M aslesa TAR Waalexa
O M aaria TAB Waarlia -
Al [+]

... appear in this list
if the user browses

the seamless table. ok I Cancel | Help |

The first column in a seamless table contains table names. The second column contains descriptions,
which appear in the user interface. The table names in the first column may contain directory paths.
You can omit the directory paths if the base tables are in the same directory as the seamless table, or if
the base tables can be located by the Search Directories path (which is specified as a Preference, in
the Directory Preferences dialog).

Every row in a seamless table has a map object attached to it, just as objects are attached to rows in
conventional tables. However, the objects in a seamless table are not intended for display. Each row in
a seamless table has a rectangle object, which defines the minimum bounding rectangle (MBR) for the
table named in the first column. When a user displays a seamless table in a Map window, Maplnfo
compares the Map window’s current extents against the MBRs stored in the table. Maplnfo only opens

the base tables when necessary (i.e., when the area currently visible in the Map window intersects the
table’s MBR).

MapBasic Syntax for Seamless Tables

Use the Set Table statement to turn a seamless table into a conventional table. For example, if you
want to edit the descriptions in a seamless table, you could issue the following statement:

Set Table DCMetroA Seamless Off

and then edit the table’s descriptions in a Browser window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 172 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Call Tablelnfo(, TAB_INFO_SEAMLESS) to determine whether a table is a seamless table.

Call GetSeamlessSheet() to display a dialog box that prompts the user to choose one base table from
a seamless table.

Limitations of Seamless Tables

All of the base tables in a seamless table must have the same structure (i.e., the same number of
columns, the same column names, etc.).

Note that some Maplinfo operations cannot be used on seamless tables. For example:

* You cannot simultaneously select objects from more than one base table in a seamless table.

* The MapBasic Find statement cannot search an entire seamless table; the Find statement
can only work with one base table at a time.

* You cannot make a seamless table editable in a Map window.
¢ You cannot create a thematic map for a seamless table.

Accessing DBMS Data

The preceding discussions showed you how to work with local Maplnfo tables, tables on your hard
disk, or perhaps on a network file-server. This section describes how MapBasic can access DBMS
tables, such as Oracle or SQL Server databases.

MapBasic’s remote-data statements and functions all begin with the keyword Server, with the
exception of the Unlink statement. For details on the syntax, see the MapBasic Reference or online
Help.

How Remote Data Commands Communicate with a Database

MaplInfo allows a MapBasic application to connect to multiple databases at one time and issue multiple
intermixed SQL statements. This is done through connection handles and statement handles.

Connection handles (or numbers) identify information about a particular connection. MapBasic defines
connection handles as variables of type integer (i.e., a connection number). An application receives a
connection handle upon connecting to a data source. The connection handle is used to associate
subsequent statements with a particular connection.

Statement handles (or numbers) identify information about an SQL statement. MapBasic defines
statement handles as variables of type integer (i.e., a statement number). An application must receive
a statement handle upon calling the Server_Execute() function to submit an SQL request. The
statement handle is used to associate subsequent SQL requests, like the Fetch and Close operations,
to a particular Select statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 173 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Connecting and Disconnecting

Before a MapBasic application can begin executing SQL statements to remote databases, it must
request a connection using the Server_Connect function. Once a successful connection is
established, the function returns a connection handle (hdbc) for use with subsequent SQL DataLink
calls.

Dim hdbc As Integer
hdbc = Server Connect (”ODBC”, ”DLG=1")

When the driver performs a commit or rollback, it resets all statement requests associated with that
connection. The Driver Manager handles the work associated with switching connections while
transactions are in progress on the current connection.

Use the following statement to disconnect:
Server hdbc Disconnect
This statement closes the connection and frees all resources associated with it.

The following chart describes the sequence in which SQL MapBasic Server statements can be issued.
There are some statements that require no connection information (for example,
Server_NumbDrivers()), some that require only a connection handle (for example, Server Commit),
and some that require a statement handle (for example, Server Fetch).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 174 MB_UG.pdf

User Guide Chapter 8: Working With Tables

These statements do not need
any connection information:

Server_NumbDrivers()
Server_DriverInfo()

v

Call this function to get a connection
“hdbc=Server_Connect(toolkit,connect_string)

v

These statements need a valid
connection handle.

Server hdbc Begin Transaction
Server hdbc Commit A
Server hdbc Rollback

Call this function to get a statement
hstmt=Server_Execute(hdbc,sql_string)

|

v

These statements need a valid

Call this statement to close a
Server hdbc Disconnect

statement handle. Close this statements to close
Server hstmt Bind Column a statement handle.
Server hstmt Fetch Server hstmt Close

Server_EOT(hstmt)
Server_NumCols(hstmt, ...)
Server_Columninfo(hstmt, ...)

A

You can download an entire table, some rows and columns, or a result set from an ODBC data source
using the Into feature of the MapBasic statement Server Fetch. However, any updates applied to the
downloaded table are not applied back to the server database table. Updating remote databases is
accomplished by the Save File statement.

Accessing/Updating Remote Databases with Linked Tables

A linked table is a special kind of MaplInfo table that retains links to a remote database. Edits can be
made over multiple MaplInfo sessions. Because the linked table updates are occurring outside of an
RDBMS transaction, other RDBMS users can update the same rows in the same tables. An optimistic
concurrency control mechanism is used to prevent data corruption. Concurrency control is
accomplished with the Automatic/Interactive clause of the Commit Table statement. When the data

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 175 MB_UG.pdf

User Guide Chapter 8: Working With Tables

is saved, a connection with the remote database is re-established, editing conflicts are resolved, and
the changed data is written to the RDBMS. A linked table is created with the MapBasic statement
Server Link Table.

Linked tables contain information to re-establish connections and identify the remote data to be
updated. This information is stored as metadata in the tab file.

An unedited linked table can be refreshed with current data from the remote database without
respecifying the connection data, query, and table. A linked table is refreshed with the MapBasic
statement Server Refresh.

A linked table can be unlinked with the MapBasic statement Unlink. Unlinking a table removes the link
to the remote database. The end product is a normal Maplnfo base table.

Using Maplnfo’s spatial indexing, users will be able to store and retrieve points in any database; or
spatial objects in supported spatial objects. See Appendix E, Making A Remote Table Mappable.

Live Access to Remote Databases

You can access data live from remote databases with the Register Table statement. When you specify
the Type as ODBC, the Register Table statement tells MaplInfo to examine the ODBC table and build
a corresponding table file (filename.TAB).

Performance Tips for Table Manipulation

Minimize Transaction-File Processing

Ordinarily, when a user edits a Maplnfo table, MapInfo stores the edits in a temporary file known as a
transaction file. As the user performs more and more edits, the transaction file grows larger. A large
transaction file can slow down some operations, therefore, if your MapBasic program performs table
editing, you may want to take one of the following steps to prevent the transaction file from growing too
large:

e Save your edits (i.e., perform a Commit statement) regularly. For example, you might set up
your program so that it performs a commit after every 100 edits. Saving your edits empties out
the transaction file.

¢ Use a Set Table ... FastEdit statement to turn on FastEdit mode. In FastEdit mode, edits are
saved immediately to a table, instead of being stored in a transaction file. For details, see the
MapBasic Reference or online Help. See also: Set Table ... Undo Off.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 176 MB_UG.pdf

User Guide Chapter 8: Working With Tables

Use Indices Where Appropriate

Some queries are faster if you index one or more columns in your table. For example, Select
statements can be faster if you index the columns used in Where, Order By, or Group By clauses.
However, you may not want to index every single column in your table. Indexing every column can slow
down some operations because Maplnfo must spend more time maintaining indices. If your application
performs intensive table manipulation that does not involve queries, you may be able to improve speed
by doing the following:

1. Delete the indices from your table (using the Drop Index statement).
2. Perform table edits as necessary.

3. Save your edits.

4. Use the Create Index statement to re-create the indices.

This strategy can speed up heavy-duty table manipulation, because MaplInfo no longer needs to
maintain indices during the editing operations.

Using Sub-Selects

The Select statement can include a Where clause that performs a sub-select, as described in the
MapBasic Reference. However, you may find it faster to perform two non-nested Select statements,
instead of one nested Select ... Where (Select ...) statement.

If you perform a sub-select of this type:

Where x = Any(Select ...)

then Maplnfo does optimize the query performance, but only if column x is indexed.

Optimized Select Statements

Some types of Select queries are optimized for fast performance. See Select in the MapBasic
Reference or online Help.

Using Update Statements

MapBasic allows you to update map objects one at a time, by performing an Alter Object statement
and then an Update statement on individual rows, often within a loop. However, this type of table
manipulation can be very slow, because you are issuing several statements for every row that you
modify.

In some cases, you can obtain much faster performance by issuing a single Update statement that
affects an entire table, rather than updating one row at a time. For an example, see the topic “Updating
Symbols Quickly” in the MapBasic online Help.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 177 MB_UG.pdf

File Input/Output

In MapBasic, there is an important distinction between managing files and
managing Maplnfo tables. The preceding chapter describes how
MapBasic lets you manage tables. This chapter describes how you
manage files that are not tables.

Sections in this Chapter:

¢ Overview of FileInput/Output 179
¢ Sequential Filel/O 180
+ Platform-Specific & International Character Sets 182

£ Maplnfo.

User Guide Chapter 9: File Input/Output

Overview of File Input/Output

File input/output (usually abbreviated file i/0) is a process of reading information from files (input) and/

or writing information to files (output). The MapBasic language provides a set of standard BASIC input/
output statements and functions to let you read and/or write text or binary files. Furthermore, because

MapInfo and MapBasic are designed to accommodate different hardware platforms, MapBasic’s file i/o
statements provide mechanisms that let you ensure seamless sharing of data.

There are three different types of file access: sequential, random, and binary. Which mode you should
use depends on the nature of the data in the file(s) you need to access. The three modes are
summarized below:

¢ Use sequential file i/o to read text from variable-length text files. For example, if one line of a
text file is fifty characters long, and subsequent lines in the text file are longer or shorter than
fifty characters, then the file is variable-length. Use sequential file i/o for accessing such files.

* Use random file i/o to read from text files that are fixed-length. If every line in a file is exactly
80 characters long, the file is fixed-length, and you can access the file using random file i/o.

¢ Use binary file i/o to access binary (non-text) file data. If you use binary file i/o to store data in

a file, MaplInfo stores numeric data in an efficient storage format. Binary files containing
numerical data cannot be viewed or edited in a text editor, however, they provide a more
efficient format for storing numerical data than text files.

Regardless of which type of file i/o you will perform, the first step to performing file i/o is to open the file

you want to use. In MapBasic, you open a file using the Open File statement. This statement has

several optional clauses; which clauses you need to use depends on your specific situation. The

following statement opens a text file for sequential input:

Open File ”settings.txt” For Input As #1

When you open a file, you specify a file number; in the example above, the number is one. Later

statements in your program refer to the same number that you specified in the Open File statement.
For example, to read text from the file into a String variable, you could issue a Line Input statement,
and the Line Input statement would refer to the same file number (#1) as the Open File statement:

Line Input #1, s_nextline
If you need to have two or more files open at the same time, make sure that each file is opened under

a different number.

In some situations, you may need to create a new file in which to store your data. To create a new file,
issue an Open File statement that includes the For Output clause:

Open File "workfile.txt” For Output As #2

Alternately, you can specify For Append in the Open File statement. With Append mode, MapBasic
creates the file if it does not already exist, or MapBasic lets you append data to the file if it already does
exist. When you are finished reading from or writing to a file, issue a Close File statement. For
example:

Close File #1

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 179 MB_UG.pdf

User Guide Chapter 9: File Input/Output

The number parameter is the same identification number assigned to the file in the Open File
statement. The pound sign (#) is optional. You do not need to execute a “save” command to save a file
that was created or modified through file input/output. You are done modifying the file as soon as you
issue the Close File statement. (MapBasic does provide a Save File statement, but its purpose is to
let you copy a file, not save changes to a file.)

There are many ways in which programs can generate runtime errors during file i/o. If the Open File
statement specifies the wrong file name, or if you attempt to open a file for output, but the file is flagged
as read-only, a runtime error will occur. If your program writes data to a file, the program could generate
a runtime error if the program runs out of disk space. If you try to open a file for output, but that file is
currently being modified by another network user, your program will generate a runtime error. If you are
developing an application that performs file input/output, you should build error-handling routines into
your program to detect and correct error conditions, and you should test your application under
conditions likely to cause problems (for example, out of disk space). For information on how to create
an error handler, see Chapter 5.

In some circumstances, you can prevent errors from happening by calling appropriate functions. For
example, before you issue an Open File statement, you can call the FileExists() function to determine
whether the file exists. Also, if your program needs to create a temporary, working file, but you do not
know what name or directory path to assign to the file (because you do not know the names of your
users’ directories), call the TempFileName$() function. Other statements that are related to file i/o:

* The Kill statement deletes a file.
¢ The Save File statement saves a copy of a file.
* The Rename File statement changes the name of a file.

* Functions such as ProgramDirectory$(), HomeDirectory$() and ApplicationDirectory$()
let you determine different directory paths at runtime. For example, to build a string
representing the name of a file that exists in the Maplnfo directory (for example, the Startup
workspace), when you do not know the name of the directory, call ProgramDirectory$(), to
determine where Maplnfo is installed.

Sequential File 1/0

If you intend to perform sequential file i/o (reading/writing of variable-length text files), there are three
different options you can specify in the Open File statement’s For clause: Input, Output, or Append.

Use the For Input clause if you intend to read from an existing file. For example, the Named Views
sample program (nviews.mb) issues the following statement to open an existing text file for input:

Open File view file For Input As #1

The string variable view_file contains the name of a text file.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 180 MB_UG.pdf

User Guide Chapter 9: File Input/Output

After you open a file for Input, you can read from the file using either the Input # statement or the Line
Input # statement. The Line Input # statement reads an entire line from the file into a String variable.
With the Input # statement, you can treat each line of text as a comma-separated list of values, and
read each value into a separate variable. For example, the Named Views application reads data that is
formatted in the following manner:

"New York”, -75.75, 42.83, 557.5

"Texas”, -100.2, 31.29, 1200
Each line of the text file contains four values: a name, an x-coordinate, a y-coordinate, and a zoom
distance. The Named Views application uses the following Input # statement to read each line into four
separate variables:

Input #1, vlist(tot) .descript,
vlist (tot) .x,
vlist (tot) .y,
vlist (tot) .zoom

The vlist variable is an array of custom type variables.

When you read data sequentially, you need to test to see whether each read was successful. After your
program has read the entire contents of the file, if you attempt to read further the read operation will
fail. To test whether a read operation was successful, call the EOF() function (end-of-file) after each
input operation. If the EOF() function returns a value of FALSE, then you have not yet exhausted the
contents of the file (which means that your read was successful). When the EOF() function returns
TRUE, you are at the end of the file.

Note: Reading the last line of the file does not cause the end-of-file condition. The EOF() function
will only return TRUE after you have attempted to read past the end of the file.
To create a file that contains a comma-separated list of expressions, issue an Open File statement
with the For Output clause or the For Append clause. After opening the file, use the Write #
statement to write data to the file. In the Write # statement, you can specify a comma-separated list of
expressions to be written to each line in the file. For example, the Named Views application issues the
following Write # statement (within a loop) to create a file with the four values (name, x, y, and zoom)
shown above:

Write #1, vlist (i) .descript, vlist(i).x, vlist(i).y, vlist (i) .zoom

The Write # statement encloses each string expression in double-quotation marks within the file, as
shown in the example above (“New York”...). In some situations, using the Write # statement may be
inappropriate, because you may not want text to be enclosed in quotation marks. To write text to a file
without quotation marks, use Print # instead of Write #.

If you want to read an entire line into one String variable, use the Line Input # statement. Use the Print
statement to create a file that can later be read using the Line Input # statement. For an example of
using Print # and Line Input # to read or write an entire line at once, see the sample program
auto_lib.mb. The auto_lib program reads and writes MapInfo workspace files (specifically, the startup
workspace file).

You cannot write to a sequential file that was initially opened for input and you cannot read from a
sequential file that was initially opened for output.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 181 MB_UG.pdf

User Guide Chapter 9: File Input/Output

Random File I/0

To perform random-access file i/o, specify the For Random clause in the Open statement:

Open File ”"datafile.dat” For Random As #1 Len = 80

When you open a file in Random mode, you include a Len clause that indicates the number of bytes in
each line in the file. Note that any text file contains end-of-line terminators; invisible characters that are
embedded in the file to mark the end of each line. The line length specified in the Len clause (80 in the
example above) specifies the exact number of characters in each record, including any end-of-line
terminators (for example, carriage-return/line-feed characters).

After you have opened a file for random access, you can read from or write to the file using the Get and
Put statements; see the MapBasic Reference.

Binary File 1/0

Binary files are files that contain numeric values stored in binary format. The following statement
demonstrates how to open a file for binary access:

Open File ”settings.dat” For Binary As #1

After you have opened a file for binary access, you can read from or write to the file using the Get and
Put statements; see the MapBasic Reference.

Numerical data stored in binary format is stored very efficiently. For example, each Integer value is
stored using exactly four bytes of the file, regardless of how large the Integer value is. By contrast, if an
Integer value is nine digits long (for example, 111,222,333), and you store the value in a text file, the
value will occupy nine bytes of the file. Binary storage provides a more efficient format for the storage
of non-text data. However, if you need to be able to view your files in a text editor, you should store
your data in text files rather than binary files.

The records in a binary file can include character strings, but they must be of fixed length.

Platform-Specific & International Character Sets

If you encounter problems reading text files that originated on another hardware platform or in another
country, you may need to use the Open File statement’s optional CharSet clause. Every character on
a computer keyboard corresponds to a numeric code. For example, the letter “A” corresponds to the
character code 65. A character set is a set of characters that appear on a computer, and a set of
numeric codes that correspond to those characters.

Different character sets are used in different countries. For example, in the version of Windows for
North America and Western Europe, character code 176 corresponds to a degree symbol; however, if
Windows is configured to use another country’s character set, character code 176 may represent a
different character. The fact that different countries use different character sets may cause problems if
you need to read a file that originated in a different country.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 182 MB_UG.pdf

User Guide Chapter 9: File Input/Output

To correct character set-related misinterpretations, include a CharSet clause in your Open File
statement. The CharSet clause lets you explicitly state the character set with which the file was
originally created. If you include a CharSet clause which correctly identifies the file’s origin, MapInfo
will correctly interpret data while reading from (or writing to) the file. For a listing of character set names
that can be used in a CharSet clause, see CharSet in the MapBasic Reference.

File Information Functions

The following functions return information about an open file:

* FileAttr() returns the mode in which the file was opened (INPUT, OUTPUT, APPEND,
RANDOM, or BINARY).

e EOF() returns a logical TRUE if there has been an attempt to read past the end-of-file, or if the
file pointer has been placed past the end-of-file.

* Seek() returns the location in the file in offset bytes. On a RANDOM file, this is the number of
the last record used times the record length, not the record number alone.

¢ LOF() returns the length of the entire file in bytes.

Each of these functions uses the file number assigned in the Open File statement as an argument. For
more information, see the MapBasic Reference or online Help.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 183 MB_UG.pdf

Graphical Objects

Much of MapBasic’s power lies in its ability to query and manipulate map
objects — arcs, ellipses, frames, lines, points, polylines, rectangles,
regions, rounded rectangles, and text objects. This chapter discusses
how a MapBasic program can query, create, and modify the objects that
make up a map. Note, however, that you need to understand the
principles of MaplInfo tables before you can understand how MapBasic
can store objects in tables. If you have not already done so, you may want
to read Chapter 8: Working With Tables before reading this chapter.

Sections in this Chapter:

¢ Using Object Variables. 185
¢ Usingthe “Obj” Columnc.... 185
¢ Querying An Object’s Attributes. 187
¢ CreatingNewObjects.o, 193
¢+ Creating Objects Based On Existing Objects 196
¢ ModifyingObjects. 197
¢ Working WithMap Labels 199
¢+ Coordinates and Units of Measure 203
¢+ Advanced Geographic Queries...................... 205

£ Maplnfo.

User Guide Chapter 10: Graphical Objects

Using Object Variables

MapBasic’s Object variable type allows you to work with both simple objects, like lines, and complex
objects, like regions. (Visual Basic programmers take note: MapBasic’s Object type represents
graphical shapes, not OLE objects.)

MapBasic Object variables can be treated much like other variables. You can assign values to object
variables, pass object variables as arguments to functions and procedures, and store the values of
object variables in a Maplnfo table.

Use the Dim statement to define an object variable:

Dim Myobj, Office As Object

You do not have to specify the specific type of object that you want the variable to contain. An object
variable can contain any type of map or layout object.

Use the equal sign (=) to assign a value to an object variable, as shown in the next example:

Office = CreatePoint (73.45, 42.1)

Myobj = Office
You can assign objects from other object variables, functions that return objects, or table expressions
of the form tablename.Obj. However, there is no syntax for specifying a literal (“hard-coded”) object
expression.

An object variable holds all of the information that describes a map object. If you store a line object in
an object variable, the variable contains both geographic information about the line (for example, the
line’s starting and ending coordinates) and display information (the line’s color, thickness, and style).
MapBasic also provides four style variable types (Pen, Brush, Symbol, and Font) that can store styles
without storing object coordinates.

Using the “Obj” Column

The column named Obj is a special column that refers to a table’s graphical objects. Any table that
has graphical objects has an Obj column, although the Obj column typically does not appear in any
Browser window.

To access the contents of the Object column, use an expression of the form tablename.obj (or of the
form tablename.object). The following example declares an object variable (current_state), then
copies an object from the states table into the variable.

Dim current state As Object

Open Table ”“states”

Fetch First From states

current state = states.obj
You can perform the same kinds of operations with object columns that you can with regular columns.
You can use SQL queries that reference the object column, Update the values (objects) in the column,
and read its contents into variables.

